CS3501 Compiler Design

UNIT-I

INTRODUCTION TO LANGUAGE PROCESSING:

As Computers became inevitable and indigenous part of human life, and several languages
with different and more advanced features are evolved into this stream to satisfy or comfort the user
in communicating with the machine , the development of the translators or mediator Software‘s
have become essential to fill the huge gap between the human and machine understanding. This
process is called Language Processing to reflect the goal and intent of the process. On the way to
this process to understand it in a better way, we have to be familiar with some key terms and

concepts explained in following lines.
LANGUAGE TRANSLATORS :

Is a computer program which translates a program written in one (Source) language to its
equivalent program in other [ Target]language. The Source program is a high level language where as
the Target language can be any thing from the machine language of a target machine (between
Microprocessor to Supercomputer) to another high level languageprogram.

2. Two commonly Used Translators are Compiler and Interpreter
1. Compiler : Compilerisaprogram,reads program in one language called Source Language

and translates in to its equivalent program in another Language called Target Language, in
addition to this its presents the error information to the User.

An Equivalent Program in

COMPILER ., other Language or
Relocatable Object Code

\ or Target Program

Source program in
one language or
high level
Language

4

Error Information

> Ifthetarget program is an executable machine-language program, it can then be called by
the users to process inputs and produce outputs.

Input Target Program Output

Figurel.1: Running the target Program

12|Page




CS3501 Compiler Design

2. Interpreter: An interpreter is another commonly used language processor. Instead of
producing a target program as a single translation unit, an interpreter appears to directly
execute the operations specified in the source program on inputs supplied by theuser.

Source Program

Interpreter Output
Input

—

Figure 1.2: Running the target Program

LANGUAGE PROCESSING SYSTEM:

Based on the input the translator takes and the output it produces, a language translator can be
called as any one of the following.

Preprocessor: A preprocessor takes the skeletal source program as input and produces an extended
version of it, which is the resultant of expanding the Macros, manifest constants if any, and
including header files etc in the source file. For example, the C preprocessor is a macro processor
that is used automatically by the C compiler to transform our source before actual compilation. Over
and above a preprocessor performs the following activities:

2. Collects all the modules, files in case if the source program is divided into different modules
stored at different files.

2. Expands short hands / macros into source languagestatements.

Compiler: Is a translator that takes as input a source program written in high level language and
converts it into its equivalent target program in machine language. In addition to above the compiler
also

2. Reports to its user the presence of errors in the source program.

2. Facilitates the user in rectifying the errors, and execute the code.

Assembler: Is a program that takes as input an assembly language program and converts it into its
equivalent machine language code.

Loader / Linker: This is a program that takes as input a relocatable code and collects the library
functions, relocatable object files, and produces its equivalent absolute machine code.

Specifically,

2. Loading consists of taking the relocatable machine code, altering the relocatable
addresses, and placing the altered instructions and data in memory at the proper locations.

2. Linking allows us to make a single program from several files of relocatable machine
code. These files may have been result of several different compilations, one or more
may be library routines provided by the system available to any program that needs them.

12|Page




CS3501 Compiler Design

In addition to these translators, programs like interpreters, text formatters etc., may be used in
language processing system. To translate a program in a high level language program to an
executable one, the Compiler performs by default the compile and linking functions.

Normally the steps in a language processing system includes Preprocessing the skeletal Source
program which produces an extended or expanded source program or a ready to compile unit of
the source program, followed by compiling the resultant, then linking / loading , and finally its
equivalent executable code is produced. As I said earlier not all these steps are mandatory. In
some cases, the Compiler only performs this linking and loading functions implicitly.

The steps involved in a typical language processing system can be understood with following
diagram.

Source Program [ Example: filename.C ]

Preprocessor &

Modified Source Program [ Example: filename.C |

Compiler Target Assembly Program i
h
Assginbler Relocatable Machine Code [ Example: filename.obj ]
Loader/Linker Library files

Relocatable Object files
Target Machine Code [ Example: filename. exe ]

Figurel.3 : Context of a Compiler in Language Processing System

TYPES OF COMPILERS: l

Based on the specific input it takes and the output it produces, the Compilers can be classified
into the following types;

Traditional Compilers(C, C++, Pascal): These Compilers convert a source program in a HLL
into its equivalent in native machine code or object code.

12|Page




CS3501 Compiler Design

Interpreters(LISP, SNOBOL, Javal.0): These Compilers first convert Source code into
intermediate code, and then interprets (emulates) it to its equivalent machine code.

Cross-Compilers: These are the compilers that run on one machine and produce code for
another machine.

Incremental Compilers: These compilers separate the source into user defined-steps;
Compiling/recompiling step- by- step; interpreting steps in a given order

Converters (e.g. COBOL to C++): These Programs will be compiling from one high level
language to another.

Just-In-Time (JIT) Compilers (Java, Micosoft. NET): These are the runtime compilers from
intermediate language (byte code, MSIL) to executable code or native machine code. These
perform type —based verification which makes the executable code more trustworthy

Ahead-of-Time (AOT) Compilers (e.g., .NET ngen): These are the pre-compilers to the native
code for Java and .NET

Binary Compilation: These compilers will be compiling object code of one platform into object code
of another platform.

PHASES OF A COMPILER:

Due to the complexity of compilation task, a Compiler typically proceeds in a Sequence of
compilation phases. The phases communicate with each other via clearly defined interfaces.
Generally an interface contains a Data structure (e.g., tree), Set of exported functions. Each
phase works on an abstract intermediate representation of the source program, not the source
program text itself (except the first phase)

Compiler Phases are the individual modules which are chronologically executed to perform their
respective Sub-activities, and finally integrate the solutions to give target code.

It is desirable to have relatively few phases, since it takes time to read and write immediate files.
Following diagram (Figurel.4) depicts the phases of a compiler through which it goes during the
compilation. There fore a typical Compiler is having the following Phases:

1. Lexical Analyzer (Scanner), 2. Syntax Analyzer (Parser), 3.Semantic Analyzer,
4.Intermediate Code Generator(ICG), 5.Code Optimizer(CO) , and 6.Code
Generator(CGQG)

In addition to these, it also has Symbol table management, and Error handler phases. Not all
the phases are mandatory in every Compiler. e.g, Code Optimizer phase is optional in some

12|Page




CS3501 Compiler Design

12|Page




CS3501 Compiler Design

cases. The description is given in next section.

The Phases of compiler divided in to two parts, first three phases we are called as
Analysis part remaining three called as Synthesis part.

Somce program

Lexical analyser

v

Syntax analysen

'

et Semantic analyser p—u00r__ ™

Svinbol-table manager { Ervor handlex

Intermediate
code generator

!

Code optumiser

R

Code generator

.

Target program

Figurel.4 : Phases of a Compiler
PHASE, PASSES OF A COMPILER:

In some application we can have a compiler that is organized into what is called passes.
Where a pass is a collection of phases that convert the input from one representation to a
completely deferent representation. Each pass makes a complete scan of the input and produces

its output to be processed by the subsequent pass. For example a two pass Assembler.

THE FRONT-END & BACK-END OF A COMPILER

12|Page




CS3501 Compiler Design

All of these phases of a general Compiler are conceptually divided into The Front-end,
and The Back-end. This division is due to their dependence on either the Source Language or
the Target machine. This model is called an Analysis & Synthesis model of a compiler.

The Front-end of the compiler consists of phases that depend primarily on the Source
language and are largely independent on the target machine. For example, front-end of the
compiler includes Scanner, Parser, Creation of Symbol table, Semantic Analyzer, and the

Intermediate Code Generator.

The Back-end of the compiler consists of phases that depend on the target machine, and
those portions don‘t dependent on the Source language, just the Intermediate language. In this we
have different aspects of Code Optimization phase, code generation along with the necessary

Error handling, and Symbol table operations.

LEXICAL ANALYZER (SCANNER): The Scanner is the first phase that works as interface
between the compiler and the Source language program and performs the following functions:

2. Reads the characters in the Source program and groups them into a stream of tokens in
which each token specifies a logically cohesive sequence of characters, such as an
identifier , a Keyword , a punctuation mark, a multi character operator like := .

2. The character sequence forming a token is called a lexeme of the token.

The Scanner generates a token-id, and also enters that identifiers name in the Symbol
table if it doesn‘t exist.

2. Also removes the Comments, and unnecessary spaces.
The format of the token is < Token name, Attribute value>

SYNTAX ANALYZER (PARSER): The Parser interacts with the Scanner, and its subsequent
phase Semantic Analyzer and performs the following functions:

2. Groups the above received, and recorded token stream into syntactic structures, usually
into a structure called Parse Tree whose leaves are tokens.

2. The interior node of this tree represents the stream of tokens that logically belongs
together.

2. It means it checks the syntax of program elements.

SEMANTIC ANALYZER: This phase receives the syntax tree as input, and checks the
semantically correctness of the program. Though the tokens are valid and syntactically correct, it

12|Page




CS3501 Compiler Design

may happen that they are not correct semantically. Therefore the semantic analyzer checks the
semantics (meaning) of the statements formed.

2. The Syntactically and Semantically correct structures are produced here in the form of a
Syntax tree or DAG or some other sequential representation like matrix.

INTERMEDIATE CODE GENERATORICG): This phase takes the syntactically and
semantically correct structure as input, and produces its equivalent intermediate notation of the
source program. The Intermediate Code should have two important properties specified below:

2. It should be easy to produce,and Easy to translate into the target program. Example
intermediate code forms are:

2. Three address codes,
2. Polish notations, etc.

CODE OPTIMIZER: This phase is optional in some Compilers, but so useful and beneficial in
terms of saving development time, effort, and cost. This phase performs the following specific
functions:

2. Attempts to improve the IC so as to have a faster machine code. Typical functions
include —Loop Optimization, Removal of redundant computations, Strength reduction,
Frequency reductions etc.

2. Sometimes the data structures used in representing the intermediate forms may also be
changed.

CODE GENERATOR: This is the final phase of the compiler and generates the target code,
normally consisting of the relocatable machine code or Assembly code or absolute machine
code.

2. Memory locations are selected for each variable used, and assignment of variables to
registers 1s done.

2. Intermediate instructions are translated into a sequence of machine instructions.

The Compiler also performs the Symbol table management and Error handling throughout the
compilation process. Symbol table is nothing but a data structure that stores different source
language constructs, and tokens generated during the compilation. These two interact with all
phases of the Compiler.

12|Page




CS3501 Compiler Design

For example the source program is an assignment statement; the following figure shows how the
phases of compiler will process the program.

The input source program is Position=initial+rate*60

position = imitial * rate = 60

— v
[ Lexical Analyzer ]
v
{(id, 1) (=) {3d,2) (+) (id,3) (=) (60}
f—_ | Svntax Ana.l__vzcr j
— —_— — ’
Gid, 1y oy, |
(id’ 2r/ : - ——
(id. 3} 60
- -
[ Semantic Analyzer I
- A &
Ga,1y” e )
(id, 2) — o
a3y inttofloat
v 60

! Intermediate Cotle Generator ]

tl = dinssofloat(60)
t20=. 3id3 = t1

=3 = 1id2 + 2

idl = <3

A\ L . o

! Code Optimizer |

. — e — —_—

Tl = id3 = 60.0
idl = 3id2 + t1

r Code Generator
v
LDF R2, id3
MULF R2, R2, 8650.0
LDF Ri, id2
ADDF R1, R1,. R2
STF idi,. R1

Figurel.S: Translation of an assignment Statement

12|Page




CS3501 Compiler Design

LEXICAL ANALYSIS:

As the first phase of a compiler, the main task of the lexical analyzer is to read the
input characters of the source program, group them into lexemes, and produce as output tokens
for each lexeme in the source program. This stream of tokens is sent to the parser for syntax
analysis. It is common for the lexical analyzer to interact with the symbol table as well.

When the lexical analyzer discovers a lexeme constituting an identifier, it needs to
enter that lexeme into the symbol table. This process is shown in the following figure.

token
source Lexical > to semantic
—— Parser —— .
program Analyzer | analysis
getNextToken
Symbol
Table

Figure 1.6 : Lexical Analyzer

When lexical analyzer identifies the first token it will send it to the parser, the parser
receives the token and calls the lexical analyzer to send next token by issuing the
getNextToken() command. This Process continues until the lexical analyzer identifies all the
tokens. During this process the lexical analyzer will neglect or discard the white spaces and
comment lines.

TOKENS, PATTERNS AND LEXEMES:

A token is a pair consisting of a token name and an optional attribute value. The token
name is an abstract symbol representing a kind of lexical unit, e.g., a particular keyword, or a
sequence of input characters denoting an identifier. The token names are the input symbols that
the parser processes. In what follows, we shall generally write the name of a token in boldface.
We will often refer to a token by its token name.

A pattern is a description of the form that the lexemes of a token may take [ or match]. In the
case of a keyword as a token, the pattern is just the sequence of characters that form the
keyword. For identifiers and some other tokens, the pattern is a more complex structure that is
matched by many strings.

12|Page




CS3501 Compiler Design

A lexeme is a sequence of characters in the source program that matches the pattern for a
token and is identified by the lexical analyzer as an instance of that token.

Example: In the following C language statement ,

printf ("Total = %d\nl, score) ;

both printf and score are lexemes matching the pattern for token id, and "Total = %d\nl
is a lexeme matching literal [or string].

TOKEN INFORMAL DESCRIPTION SAMPLE LEXEMES
if characters i, f if
else characters e, 1, s, e else
comparison | <or > or <= or >= or == or != <=, I=
id letter followed by letters and digits | pi, score, D2
number any numeric constant 3.14159, 0, 6.02e23
literal anything but ", surrounded by "’s

Figure 1.7: Examples of Tokens

LEXICAL ANALYSIS Vs PARSING:

"core dumped"

There are a number of reasons why the analysis portion of a compiler is normally separated into
lexical analysis and parsing (syntax analysis) phases.

2. 1. Simplicity of design is the most important consideration. The separation of Lexical
and Syntactic analysis often allows us to simplify at least one of these tasks. For
example, a parser that had to deal with comments and whitespace as syntactic units
would be considerably more complex than one that can assume comments and
whitespace have already been removed by the lexical analyzer.

2. 2. Compiler efficiency is improved. A separate lexical analyzer allows us to apply
specialized techniques that serve only the lexical task, not the job of parsing. In addition,
specialized buffering techniques for reading input characters can speed up the compiler

significantly.

2. 3. Compiler portability is enhanced: Input-device-specific peculiarities can be
restricted to the lexical analyzer.

12|Page




CS3501 Compiler Design

12|Page




CS3501 Compiler Design

INPUT BUFFERING:

Before discussing the problem of recognizing lexemes in the input, let us examine
some ways that the simple but important task of reading the source program can be speeded.
This task is made difficult by the fact that we often have to look one or more characters beyond
the next lexeme before we can be sure we have the right lexeme. There are many situations
where we need to look at least one additional character ahead. For instance, we cannot be sure
we've seen the end of an identifier until we see a character that is not a letter or digit, and
therefore is not part of the lexeme for id. In C, single-character operators like -, = or <
could also be the beginning of a two-character operator like ->, ==, or <=. Thus, we shall
introduce a two-buffer scheme that handles large look aheads safely. We then consider an
improvement involving "sentinels" that saves time checking for the ends of buffers.

Buffer Pairs

Because of the amount of time taken to process characters and the large number of characters
that must be processed during the compilation of a large source program, specialized buffering
techniques have been developed to reduce the amount of overhead required to process a single
input character. An important scheme involves two buffers that are alternately reloaded.

B = wslc ez
T forward
lexemeBegin

Figurel.8 : Using a Pair of Input Buffers

Each buffer is of the same size N, and N is usually the size of a disk block, e.g., 4096
bytes. Using one system read command we can read N characters in to a buffer, rather than
using one system call per character. If fewer than N characters remain in the input file, then a
special character, represented by eof, marks the end of the source file and is different from any
possible character of the source program.

>. Two pointers to the input are maintained:

1. The Pointer lexemeBegin, marks the beginning of the current lexeme, whose extent
we are attempting to determine.

2. Pointer forward scans ahead until a pattern match is found; the exact strategy
whereby this determination is made will be covered in the balance of this chapter.

12|Page




CS3501 Compiler Design

Once the next lexeme is determined, forward is set to the character at its right end. Then,
after the lexeme is recorded as an attribute value of a token returned to the parser, 1exemeBegin
is set to the character immediately after the lexeme just found. In Fig, we see forward has passed
the end of the next lexeme, ** (the FORTRAN exponentiation operator), and must be retracted

one position to its left.

Advancing forward requires that we first test whether we have reached the end of one
of the buffers, and if so, we must reload the other buffer from the input, and move forward to
the beginning of the newly loaded buffer. As long as we never need to look so far ahead of the
actual lexeme that the sum of the lexeme's length plus the distance we look ahead is greater

than N, we shall never overwrite the lexeme in its buffer before determining it.

Sentinels To Improve Scanners Performance:

If we use the above scheme as described, we must check, each time we advance forward,
that we have not moved off one of the buffers; if we do, then we must also reload the other
buffer. Thus, for each character read, we make two tests: one for the end of the buffer, and one
to determine what character is read (the latter may be a multi way branch). We can combine the
buffer-end test with the test for the current character if we extend each buffer to hold a sentinel
character at the end. The sentinel is a special character that cannot be part of the source program,
and a natural choice is the character eof. Figure 1.8 shows the same arrangement as Figure 1.7,
but with the sentinels added. Note that eof retains its use as a marker for the end of the entire

input.

Bl D=l iMiwleofCivixi2ief | i i eof
forward
lexemeBegin

Figurel.8 : Sentential at the end of each buffer

Any eof that appears other than at the end of a buffer means that the input is at an end. Figure 1.9
summarizes the algorithm for advancing forward. Notice how the first test, which can be part of

12|Page




CS3501 Compiler Design

a multiway branch based on the character pointed to by forward, is the only test we make, except
in the case where we actually are at the end of a buffer or the end of the input.

switch ( *forward++ )

{

case eof: if (forward is at end of first buffer )
{
reload second buffer;
forward = beginning of second buffer;

}

else if (forward is at end of second buffer )

{

reload first buffer;

forward = beginning of first buffer;

else /* eof within a buffer marks the end of input */

terminate lexical analysis;

break;

Figure 1.9: use of switch-case for the sentential

SPECIFICATION OF TOKENS:

Regular expressions are an important notation for specifying lexeme patterns. While they cannot express
all possible patterns, they are very effective in specifying those types of patterns that we actually need for
tokens.

LEX the Lexical Analyzer generator

Lex is a tool used to generate lexical analyzer, the input notation for the Lex tool is
referred to as the Lex language and the tool itself is the Lex compiler. Behind the scenes, the
Lex compiler transforms the input patterns into a transition diagram and generates code, in a
file called lex .yy .c, it is a ¢ program given for C Compiler, gives the Object code. Here we need
to know how to write the Lex language. The structure of the Lex program is given below.

12|Page




CS3501 Compiler Design

Structure of LEX Program : A Lex program has the following form:

Declarations
%%
Translation rules
%%

Auxiliary functions definitions

The declarations section : includes declarations of variables, manifest constants (identifiers

declared to stand for a constant, e.g., the name of a token), and regular definitions. It appears
between %{. . .%}

In the Translation rules section, We place Pattern Action pairs where each pair have the form
Pattern {Action}

The auxiliary function definitions section includes the definitions of functions used to install
identifiers and numbers in the Symbol tale.

LEX Program Example:
%o

/* definitions of manifest constants LT,LE,EQ,NE.GT,GE, IF,THEN, ELSE,ID, NUMBER,
RELOP */

Yo}

/* regular definitions */

delim [ \t\n]

WS { delim}+

letter [A-Za-Z]

digit [0-91

id {letter} ({letter} | {digit}) *

number {digit}+ (\. {digit}+)? (E [+-1]?{digit}+)?
%%

{ws} {/* no action and no return */}

if {return(1F) ; }

12|Page




CS3501 Compiler Design

then {return(THEN) ; }
else {return(ELSE) ; }
(id) {yylval = (int) installID(); return(1D);}

(number) {yylval = (int) instalINum() ; return(NUMBER) ; }
1< {yylval = LT; return(RELOP) ; )}
— <= {yylval = LE; return(RELOP) ; }

—=] {yylval = EQ ; return(RELOP) ; }

—<>| {yylval = NE; return(RELOP);}
—<| {yylval = GT; return(RELOP);)}
—<=| {yylval = GE; return(RELOP);}
%%

int installIDO() {/* function to install the lexeme, whose first character is pointed to by yytext,
and whose length is yyleng, into the symbol table and return a pointer
thereto */

int installNum() {/* similar to installID, but puts numerical constants into a separate table */}

Figure 1.10 : Lex Program for tokens common tokens

SYNTAX ANALYSIS (PARSER)
THE ROLE OF THE PARSER:

In our compiler model, the parser obtains a string of tokens from the lexical analyzer,
as shown in the below Figure, and verifies that the string of token names can be generated
by the grammar for the source language. We expect the parser to report any syntax errors in
an intelligible fashion and to recover from commonly occurring errors to continue processing the
remainder of the program. Conceptually, for well-formed programs, the parser constructs a parse
tree and passes it to the rest of the compiler for further processing.

12|Page




CS3501 Compiler Design

12|Page




token

source | Texical - | parse | Rest of | intermediate
— Parser t---~--»l -
program | Analyzer (- ' tree ! Front End [representation
get next : X
token A

Y

Symbol
Table

Figure2.1: Parser in the Compiler

During the process of parsing it may encounter some error and present the error information back
to the user

Syntactic errors include misplaced semicolons or extra or missing braces; that is,
—{" or "}." As another example, in C or Java, the appearance of a case statement
without an enclosing switch is a syntactic error (however, this situation is usually allowed by
the parser and caught later in the processing, as the compiler attempts to generate code).

Based on the way/order the Parse Tree is constructed, Parsing is basically classified in to
following two types:

1. Top Down Parsing : Parse tree construction start at the root node and moves to the
children nodes (i.e., top down order).

2. Bottom up Parsing: Parse tree construction begins from the leaf nodes and proceeds
towards the root node (called the bottom up order).

IMPORTANT (OR) EXPECTED QUESTIONS

1. What is a Compiler? Explain the working of a Compiler with your own example?
2. What is the Lexical analyzer? Discuss the Functions of Lexical Analyzer.
3. Write short notes on tokens, pattern and lexemes?

4. Write short notes on Input buffering scheme? How do you change the basic input
buffering algorithm to achieve better performance?

5. What do you mean by a Lexical analyzer generator? Explain LEX tool.

16|Page




ASSIGNMENT QUESTIONS:

. Write the differences between compilers and interpreters?

. Write short notes on token reorganization?

. Write the Applications of the Finite Automata?
. Explain How Finite automata are useful in the lexical analysis?

. Explain DFA and NFA with an Example?

CS3501 : Compiler Design




Scanned by CamScanner




‘L*;L\
@

m&a ﬂLJﬁJ

Scanned by CamScanner




Scanned by CamScanner




]

oo Ay '-7;{;
: ’.fj/ o

{

Ol CTOE

Scanne Cmcaner




Scanned by CamScanner




Corire

: U s -
_vepa mﬁf?

/‘!

Scanned by CamScanner




|

7%"7{3}5’3\ '1&5 é ﬂ if, SE

& ’(
y

C)’(,A;Z,U\&'_’{ﬂ' Qo

Scanned by CamScanner




'

o ¢"

Scanned by CamScanner




7 onr i e
: ST [l
cymvira !

Scanned by CamScanner




place,
i 1

N b
: more  TIan

|
ol LS
A A AT

Scanned by CamScanner




Scanned by CamScanner




Scanned by CamScanner




Scanned by CamScanner




/}/

|

expy +hen Smt  elg,
%,}/U ,_"'{ dhet?’ AJ{'

(i
\
)
]

J

Scanned by CamScanner



Scanned by CamScanner




» Nyl
3 JZ)U',‘Q,-,J"JX"LM 2

A0 [, 4
AL YO YT ) Lor)

Yy
d U:l_’fr A {1__




Scanned by CamScanner




Ye 3/k”"J‘«"’=~”

eavance. Tne

]J/)/M )/lkr;{, o) rale EI'UK,MTL,« \'L/»lfu‘glo' ”'dr

J

S o lent A
ewnd consides }.»‘9" e [@‘f*’f

Scanned by CamScanner



/ 14
oy (A1)
we LT

pleyion &

o

Scanned by CamScanner




Scanned by CamScanner




Scanned by CamScanner




s 2 &

~ 71 R
e

Bl = st U BRI

“Scanned by CamScanner




Al

/74 | S

Scanned by CamScanner




ana a

Scanned by CamScanner




ey M WVIalS

Scanned by CamScanner




~
| '/L‘

}(‘1: ~ 1 ; - | ] .
bol, then  Jollow (5 )

@2\{1 ”/uu{« L&E’ﬂw br

Scanned by CamScanner




B L e

=2 o b g

) /—’@EIL:"I("'JQ“ .
orerails

ok

o

Scanned by CamScanner




;._—éob 83' Hve 57amma7
w@rr .

Scanned by CamScanner



S
)
c
c
]
3]
(9p)
£
]
o
~ 2
8
o
)
c
c
. ©
3]
w




-
[¢B)
[
[
[+
(&)
()]
e
g1
o
)
O
o]
[¢B)
[
e
[+
(&)
w




1.‘\/// F‘w .-f

1 o 1
e L
(3 }"\;Z/{K:-l?&

jé;?* wzu//

Scanned by CamScanner




i

by £—owérc& %e 700’:

Scanned by CamScanner



Feduction

@v‘faﬂff 0 ff)”!f

OUD o7 IV

s

Scanned by CamScanner




Follow l/nﬁ,

Sz

g
- Tpuf buffer — tsed Jo hold Hr

/]

SHack

Scanned by CamScaner




anned by Camcanner




Scanned by CamScanner



* Wher 1 is emitled Kk i assumed o be |
* LR Pam'wg » attsactive Loy a Vaniofy. &f
Yeagons
1 )R Parses Gam be Coshiuced Jo ecegnize
’Qmée CFGs

& )R Pmsw@ medhod (% Hre nmsf gemm[

nom - backhackma Shifl weduce PQMWOL
meHad -

S JR Papsess cam pagse. all Qa/vg”cﬁgg Pa%ep{
b&t PTQD\\CRUG PMS@/TS

olfv‘)n LR Pazsed . Goa clefect /o SyrHacke  eyyoy
A Seorr a3l U @ possible %’i

A Tjwe dodiobacks, of the methed ave.

I GRS LR Daysey 5 oo mach Wos K
b& hanA gmf a %/PLCCL, Fzrodmmmm}?

Qa% 39ammms

& Diffeead Fo parse am%‘wus Grammad
bCL)L uz;wg LR Yamsess.

Scanned by CamScanner



-
<5}
c
c
[+
O
()]
e
g1
o
)
o)
o)
D
c
c
[+
O
w




¥ The gund—ion Octior Jokes @ Slate and L‘/P

55m)90) as Mglmgrrjrﬁ and ?Q@CIUCGQ) one #—7"}‘&
fours -

| Shuert op et L

o Reo’uce ljd o 8?0""”107 ?UG‘JU‘CH/O“ A"‘)B
3 Accept

" e Sunclr go Jake o ggobe o samnan
‘E%/mbo} as anréaumemt cmc{ ‘PXocDuC@/’i aéﬁ}e-

lR Pajéma a‘ﬁ”””""‘

et lrput- Lo povit to the By Symbel & w0
| 7@]7@&)' .go‘;reve‘f b%:m ;
et "ube v He stale on koy 6% Hhe Shack
a0’ the gymbol poimied by ip.
L¥ ad—t;onf_ﬁ,aj: shist & Ehen b%m
push 'a’ then 's on bop of the Shaek ;

advance  ifp to Hhe nmext mpud Symbol
end

Scanned by CamScanner



"':'ﬁelse Lf  ockon [S,a] = Sheit < yeduce AL e,

PoP &% )8l symbel bt bhe stack . o
Let s' be +he state mow on Lop e +he sige.
push A Jher 8&0[5’, A on Ltop of Ho séack)-)
putput  the pyoduction A— B

end
Else in ockinn fo.@] - Gccept  Fnen
vetuor

6[«58 ¥ 70y ( )

end

’T&P% ef LR FPaveers

). Siprple LB Famsev (SLR)
a,.Canon}ca( I B Pawsey (CLR)
3 . | polahecd LB Yorssew (LALR)

Co—rls}wc-h}ndcc‘ SR () Pa-ﬁs{m(j Joble

Bhilo peifosm SLR Passing . boke gGrammer €2
g and do e plbwimy

| ;-le LR (o) Uems
,i‘v(@mp)eh'mé +he qu§wre
3. ompute 5@{;0(1)><) wheze
T & Jhe set of tems
X 5 He 37amma'r %uﬂéol.

Scanned by CamScanner



- LR (O) Hems

¥ An LR(0) ifers & o 57;amma~a Gite a p‘mclud{mrr
OF G wih a det af Somme Posthiar @L%e

7'8]14 Stde..
By A—>xys
LR CO) dems A —> « XYZ
A— .Yz
A —SxXY-Z
A —> XYZ"

& Closuwre OPE'M;LLHH

S

M : :
e Se) &F Uems Jo aa'vcxmmafa Gy

threr c[o_sme[l) o e sel of ifems ConS¥vucted
Loom T by Jhe X gules

- Tnikalb ooy o im T i added 40
closuze ()

8.7} A>aBS & un closwse (2) amel
B—> 7 (% a produchon, e e
Yem  Bes .9 ko closwae (3)- O«Prﬂd
'.mfe urkd po meve 11eW dems @M be

Dyﬁd&A fo closuve (TJZ>

Scanned by CamScanner



é Goto © pes atip /7 !

A Gole :
@} )[(;‘TI; X.) (% C;(?anr@_a( éo )7(.-_. {;)TF, C-/OS o
5~u }:’ Z}TSE‘}' (t)]ﬁ a)) [')lern's [A S o .X []
O UG il oarafs
& [A =2 of ,Xﬁj (% U 7 |
5}‘8})5 e

©Onedyuct sip Pae g '
Frormag 6= 0 RN

] Au%men‘)— G and produce G

C IR el Lhe Canonical Ceo llec fipm of
Qj' ")!‘@I'"S C Yo7 O
3 Corstruck e

‘lacHen’

Sef

Ctg_m‘x'wf?/rm
| FOLLLbW (R o each
o n Aeagmbnaf - of gmmmar- ‘
Agerb/'}'fﬁr Fov OOTIQ;}‘md-I'/&Q' SLR Pa‘zfsffrg. foble

e

Jis Freret 4
Cors FveLc ool 10 = é.Ia) AL ¢ 'Inz -é-}—yg Cp))ec}don
&f Setrs o} LR o) thermsiyl ., !
2. Stale j 8- copeiiictedl gwm

acltions foy slale i

T, Lhe Fav‘si/rgl
dedermimed as follows

Scanned by CamScanner



av) = J:Aﬁo(/.aﬁ)] (» vo Ij and
geto(xi,a) :'Ia‘ then sef action[ (,a |

to shift (j,Heve 'a’ must be a deymimal.

JTE 2l o Ti, then set action[ia]

to yeduce Ao Aoy all o in FoL Lotonla)

Cl) { F
(/ g (Sf--\s ' Y Lo
>.S') (% unr 1(;) then Se: QCJ"‘”[C'J'éJ
{:O acC,e,pE. |

‘f ang STe
C(ﬂ COUH"C’LV'H actions ase 5,9;7970}69(

b(‘j Lhe above yules , Lhe SGrarmmaz (%
ok siR ().

3- "ﬂ're 5@1:0 Eva/n:z;i:h;ons (?03 Stale | are Ccongd»ucied
{goar a)l non ‘Lewrrimal A u.sx'ngt Hhe yule

‘I} ﬁol:o (IL,A)—:IJ' Lhen 5@&0[6;/}):&
b- Al entvies. oy de fimed bét $he vues ©)

WﬂO‘ @ avse mQD’L"— as evywrs .

5 The imittial  slaje O the pamser & bhe
DR comsbiched) 3\ Brom Lhe Sek of Hems

Con %aimimcqv [5"-> - 5]

Scanned by CamScanner



DA>aTrto Y
A0 AT ‘J.,J d

Scanned by CamScanner



Scanned by CamScanner



P

—

-

Scanned by CamScanner




1 | | =
S5 | | Acc %
Va2 157 1| ¥, f T2 i
Yy | ) Mf’l ¥y )
— fimete =
. I . -
| S | 0 | 2 W3
5 1 |
Y6 |V | ¥e | Ve
| | o4 | ’ A
| | Sy ’ o
= | |
Ofi bt ] | S | |
; y } i A
PO 1571 L1 % )\ | '
! ! . i " i
73 A NG| 3
2 i Sl |
3 B
. ?5- | TS"‘ ‘ Ly Vs

Pa75m5 Hhe yTpu é%ima s ol

stack |\ | Adben.
- e Aa}‘(;d ! = B ;Ac%évﬁﬂo;édj,: 55 Shift @ aml pushr

: Acton [S3+]) =76, veduce b }_—)d-
0&7‘5‘ ')'Ui#’ Pop 2 Sd-mbols OfF the stack amd
) AT A | Zeko f0,F]=3, Sopush Fé&3
) | w]$ fAc.).Lan)é-J: ¥y, veduce b& =S
F3 j 7 | Top 2 gmibols. gobo[0,7)= 2, 50 push 722
7~ 1 b y fAC,LLw[z)ijzn,vfeq’uce b@t E-—>71
0T s § | Pep 2 Sy lels, goto [0, £)=1,50 push E4]

i ' ;Ac-hbn [1,%])=36, Shif+ 2 push b
Ackion [6,id]=55 , shift 14, push 5

, s ST by F>d
5 i i Ac+wn[5)$];’{6, ?'QJ}LICQ d / NG

: : Lo [b,F]=3, push F£3
é,wls" i $ fpopa,sdm}aols,acko [6 J 3,¥

Scanned by CamScanner



i Action .
!

:i&w” L3870 weduco 1
*’>F£ Po J.S(jmbo)s g
130‘)'0 6,T =9 Push TX9

’ AC}L@” [_‘7) f;j s )

f WE‘O{HCE, ba B = 15 +T

; o 6 ts. (VX
Pop X kol Gobof0,5 |~ !)P[;z',

DE) Cf | Ac}wnﬂ)ﬁ;j: dccepy
| Pat)si/rﬁ o Compie+€0(
| S)u.ccees{u”ét 1

@R e (CahoniCa\ LR P"”se’)

—_—_—

*IE 8 o nonical . GMeerin™ of LRG) therm . 4

fo-vm e an ‘u}em i LA—%M.J})Q—J
WFeTe A s B 3 a P-fodad-'wn,

A Genesal

a’ s o
fermimall oy 4 '%mbOI'

 ouch any obiect &5 Galled JR0) dem and A bndicates
the Jenévﬁx of Hhe Sewond Component lookahead
0% Fhe themn.

Consdauction 6fF +he sels of LR() themrs

function closuve(s )

%'
- Yepeat
P 'Fo_ﬂ C}.’ ,‘} LA___> OA_B_B;GB un I

éach preduction B—7 or G

Scanned by CamScanner



s . al b i FIRST(B.2)
Such bhak [B_.9,b) &6 mt in T o
glilig o T L T

urkl ne  move Uerms @m be added Lo T
Yeturn T
end -
Procedure terms (G');
beg i
C:= 5 Closuze (5[5/._).,@ ;ij%) 3/«
ve peat
For each se) 6 derns Tiw c amel

. each Frrarmiy .%mbo! X
Such Hhot g&o(I)XD&) nok- emp-}a
ard ok i € do
ad\ g0lo (7, ) Lo ¢
LN norove  ser of Uems @7 be
aclded Jo ¢

(m&}mcﬁﬁg CLR Pafm{ng Jable

N2 (ol r . Tl bhe colleetion OF

5@{‘ aj' OLR C,) {})3”75 %1 G / ;
m Ly
2 é‘}a}e [ Of #re, Pomfse,«; % Cgrt%}wc%ﬂ f@w

The fmfﬁ' ackions ko3 SFode
determimed o Follows.

; oTEe

Scanned by CamScanner



A » a £81m't/na‘

/JiS Hrern' gel-
oy S

6)3[51-95., 3] @ ;

i, Lo, thle soi
aC'J'[,Dn J:()sfoj 'z_a "aCCGjD})}

L a Conflict meoulis
éhe g‘o’amma:f @ ol IRCy).
S 5@7‘0 Lyams itions
dedermimed  as fo)lpws
L'F J’o ID/B
o ( )= s then goto [ 8]- = 5

4 Al Cerdsios o defined L
bt 7ules,
ave \made "Cvyoy g i

*g‘fom Ehe afaove L2 e,a

45297 Stade 1 amve

o . 7}78 Lol Stale Q%UH-;Q pavses (%
+he one Corgiyucted fmm Lhe sed

Scanned by CamScanner



Scanned by CamScanner




Scanned by CamScanner




56 57
j vk 72
2
7075"/(3 mym‘ : C({O[
Sk Thpuk
0 Ccu $
0ca dd 9
0634& Jé
0 c3Cs df
0C2 J$
fCad7 $

¥3

¥

Action .

Shif S3
shifl Sip

yeduce c—>d (73)
pop 2 Sambofb

309'0 [ B/C) =8
.TaJuce C“—)CC()’Z) |

POP i \éﬁmbolj
fo ([)} C) = &

shiff 57

veduce by C>d (3)
Pp @ Symbels
Gofo(2,¢)=5"

Scanned by CamScanner



Scanned by CamScanner




5@;0 fixe 2 ;

'W (55,)

NEL ¢ C-—iéfcj C/A
C—)rCC)C}Ol
@es0d ld

3@ o (.Iz,cl)

o9
goko [ T6.8)
Tq. @& >cl., b
LR
ib ) e
e e
E el
oo Gzid)
Tepshreresel , 3

Scanned by CamScanner



-
<5}
c
c
[+
O
()]
e
g1
o
)
o)
o)
D
c
c
[+
O
w




UNIT-111 SYNTAX DIRECTED TRANSLATION

SEMANTIC ANALYSIS
» Semantic Analysis computes additional information related to the meaning of the
program once the syntactic structure is known.
> Intyped languages as C, semantic analysis involves adding information to the symbol
table and performing type checking.
» The information to be computed is beyond the capabilities of standard parsing
techniques, therefore it is not regarded as syntax.
» As for Lexical and Syntax analysis, also for Semantic Analysis we need both a
Representation Formalism and an Implementation Mechanism.
» As representation formalism this lecture illustrates what are called Syntax Directed
Translations.
SYNTAX DIRECTED TRANSLATION
» The Principle of Syntax Directed Translation states that the meaning of an input
sentence is related to its syntactic structure, i.e., to its Parse-Tree.
» By Syntax Directed Translations we indicate those formalisms for specifying
translations for programming language constructs guided by context-free grammars.

o We associate Attributes to the grammar symbols representing the language
constructs.

o Values for attributes are computed by Semantic Rules associated with
grammar productions.

» Evaluation of Semantic Rules may:
o Generate Code;
o Insert information into the Symbol Table;
o Perform Semantic Check;
o Issue error messages;

o etc.



There are two notations for attaching semantic rules:
1. Syntax Directed Definitions. High-level specification hiding many implementation
details (also called Attribute Grammars).
2. Translation Schemes. More implementation oriented: Indicate the order in which
semantic rules are to be evaluated.
Syntax Directed Definitions
« Syntax Directed Definitions are a generalization of context-free grammars in which:
1. Grammar symbols have an associated set of Attributes;
2. Productions are associated with Semantic Rules for computing the values of attributes.
= Such formalism generates Annotated Parse-Trees where each node of the tree is a
record with a field for each attribute (e.g.,X.a indicates the attribute a of the grammar
symbol X).
= The value of an attribute of a grammar symbol at a given parse-tree node is defined by a
semantic rule associated with the production used at that node.

We distinguish between two kinds of attributes:

1. Synthesized Attributes. They are computed from the values of the attributes of the
children nodes.

2. Inherited Attributes. They are computed from the values of the attributes of both the
siblings and the parent nodes

Syntax Directed Definitions: An Example
« Example. Let us consider the Grammar for arithmetic expressions. The Syntax Directed

Definition associates to each non terminal a synthesized attribute called val.



PRODUCTION | SEMANTIC RULE

L — En print(E.val)
E—F,+T)| F.val := Ei.val + T.val
E —T FE.val := T.val

T —T, % F | Twal := Ti.val * F.val
T — F T.val := F.val

F — (F) F.val := E.val

F — digit F.val :=digit.lexval

S-ATTRIBUTED DEFINITIONS

Definition. An S-Attributed Definition is a Syntax Directed Definition that uses only
synthesized attributes.

« Evaluation Order. Semantic rules in a S-Attributed Definition can be evaluated by a
bottom-up, or PostOrder, traversal of the parse-tree.

« Example. The above arithmetic grammar is an example of an S-Attributed

Definition. The annotated parse-tree for the input 3*5+4n is:

|
F.val =19 n
E.val' =16 + T.'vall =4
haal’— 15 F.val = 4

|
digit.lexval= 4

/

F.val =5

T.vall = 1
F.va.ll ==
digit.lexval= 3|

|
digit.lexval= 5



L-attributed definition
Definition: A SDD its L-attributed if each inherited attribute of Xi inthe RHS of A X1 :

:Xn depends only on

2. inherited attributes of A.

Restrictions for translation schemes:

1. Inherited attribute of Xi must be computed by an action before Xi.

2. An action must not refer to synthesized attribute of any symbol to the right of that action.
3. Synthesized attribute for A can only be computed after all attributes it references have
been completed (usually at end of RHS).

SYMBOL TABLES

A symbol table is a major data structure used in a compiler. Associates attributes with
identifiers used in a program. For instance, a type attribute is usually associated with each
identifier. A symbol table is a necessary component Definition (declaration) of identifiers
appears once in a program .Use of identifiers may appear in many places of the program text
Identifiers and attributes are entered by the analysis phases. When processing a definition
(declaration) of an identifier. In simple languages with only global variables and implicit
declarations. The scanner can enter an identifier into a symbol table if it is not already there

In block-structured languages with scopes and explicit declarations:

e The parser and/or semantic analyzer enter identifiers and corresponding attributes

Symbol table information is used by the analysis and synthesis phases

To verify that used identifiers have been defined (declared)

To verify that expressions and assignments are semantically correct — type checking

To generate intermediate or target code

v" Symbol Table Interface
The basic operations defined on a symbol table include:
> allocate — to allocate a new empty symbol table
» free —to remove all entries and free the storage of a symbol table

» insert —to insert a name in a symbol table and return a pointer to its entry



> lookup —to search for a name and return a pointer to its entry
» set_attribute — to associate an attribute with a given entry

> get_attribute — to get an attribute associated with a
given entry

Other operations can be added depending on requirement For example, a delete
operation removes a name previously inserted Some identifiers become invisible (out

of scope) after exiting a block

This interface provides an abstract view of a symbol table

Supports the simultaneous existence of multiple tables

Implementation can vary without modifying the interface

Basic Implementation Techniques

First consideration is how to insert and lookup names

e Variety of implementation techniques

e Unordered List

e Simplest to implement

e Implemented as an array or a linked list

e Linked list can grow dynamically — alleviates problem of a fixed size array
e Insertion is fast O(1), but lookup is slow for large tables — O(n) on average
o Ordered List

e Ifanarray is sorted, it can be searched using binary search — O(log2 n)

e Insertion into a sorted array Is expensive — O(n) on average

Useful when set of names is known in advance — table of reserved words

Binary Search Tree

e Can grow dynamically

+ Insertion and lookup are O(log2 n) on average



RUNTIME ENVIRONMENT
» Runtime organization of different storage locations
> Representation of scopes and extents during program execution.
» Components of executing program reside in blocks of memory (supplied by OS).
» Three kinds of entities that need to be managed at runtime:
o Generated code for various procedures and programs.
e forms text or code segment of your program: size known at compile time.
o Data objects:
¢ Global variables/constants: size known at compile time
e Variables declared within procedures/blocks: size known
e Variables created dynamically: size unknown.
o Stack to keep track of procedure
e activations. Subdivide memory conceptually into
code and data areas:
= Code:
Program e instructions
= Stack: Manage activation of procedures at runtime.
= Heap: holds variables created dynamically
STORAGE ORGANIZATION
1. Fixed-size objects can be placed in predefined locations.

Code

Static Data

Stack

T T

Heap




2. Run-time stack and heap The STACK is used to store:

o Procedure activations.
o The status of the machine just before calling a procedure, so that the status can be
restored when the called procedure returns.

o The HEAP stores data allocated under program control (e.g. by malloc() in C).
Activation records

Any information needed for a single activation of a procedure is stored in the
ACTIVATION RECORD (sometimes called the STACK FRAME). Today, we’ll
assume the stack grows DOWNWARD, as on, e.g., the Intel architecture. The
activation record gets pushed for each procedure call and popped for each procedure
return.
STATIC ALLOCATION

Statically allocated names are bound to storage at compile time. Storage
bindings of statically allocated names never change, so even if a name is local to a
procedure, its name is always bound to the same storage. The compiler uses the type of
a name (retrieved from the symbol table) to determine storage size required. The
required number of bytes (possibly aligned) is set aside for the name.The address of the
storage is fixed at compile time.

Limitations:
= The size required must be known at compile time.

= Recursive procedures cannot be implemented as all locals are

statically allocated.

= No data structure can be created dynamically as all data’s static.



Return value offset=0
float f(int k)
{
float c[10],b;
Parameter k offset=4
b = c[k]*3.14;
return b;
}
Local c[10] offset = 8
Local b offset = 48

% Stack-dynamic allocation
v’ Storage is organized as a stack.
Activation records are pushed and popped.
Locals and parameters are contained in the activation records for the call.
This means locals are bound to fresh storage on every call.
If we have a stack growing downwards, we just need a stack_top pointer.

To allocate a new activation record, we just increase stack_top.

R N NI NN

To deallocate an existing activation record, we just decrease stack_top.

< Address generation in stack allocation

The position of the activation record on the stack cannot be determined statically.
Therefore the compiler must generate addresses RELATIVE to the activation record.
If we have a downward-growing stack and a stack _top pointer, we generate addresses

of the form stack top + offset



HEAP ALLOCATION

Some languages do not have tree-structured allocations. In these cases,
activations have to be allocated on the heap. This allows strange situations, like callee
activations that live longer than their callers’ activations. This is not common Heap is
used for allocating space for objects created at run timeFor example: nodes of dynamic
data structures such as linked lists and trees
Dynamic memory allocation and deallocation based on the requirements of
the programmalloc() and free() in C programs

new()and delete()in C++ programs

new()and garbage collection in Java programs

Allocation and deallocation may be completely manual (C/C++), semi-automatic(Java), or
fully automatic (Lisp)
PARAMETERS PASSING
A language has first-class functionsif functions can bedeclared within any scope
passed as arguments to other functions returned as results of functions.In a language
with first-class functions and static scope, a function value is generally represented by
a closure. a pair consisting of a pointer to function code a pointer to an activation
record.Passing functions as arguments is very useful in structuring of systems using
upcalls
An example:
main()
{int
X =
4,
int f
(int
y{
retur
n
x*y;
}
int g (int —int h){

intx=7;



return h(3) + Xx;

}
main () {
inta = 0, b=0; { Most closely nested rule
—intb=1; {
inta =2;
print(a,b); } 2,1
—{
intb = 3;
print(a,b); } 0,3
—— print(a,b);} 0,1
L, print(a,b); } 0,0
Call-by-Value

The actual parameters are evaluated and their r-values are passed
to the called procedure

A procedure called by value can affect its caller either through nonlocal
names or through pointers.
Parameters in C are always passed by value. Array is unusual, what is

passed by value is a pointer.

Pascal uses pass by value by default, but var parameters are passed by reference.

Call-by-Reference

Also known as call-by-address or call-by-location. The caller
passes to the called procedure the I-value of the parameter.

If the parameter is an expression, then the expression is evaluated in a
new location, and the address of the new location is passed.

Parameters in Fortran are passed by reference an old implementation bug in Fortran

func(a,b) { a = b};
call func(3,4); print(3);

Copy-Restore
A hybrid between call-by-value and call-by reference.

The actual parameters are evaluated and their r-values are passed as in



call- by-value. In addition, | values are determined before the call.

When control returns, the current r-values of the formal parameters are
copied back into the I-values of the actual parameters.

Call-by-Name
The actual parameters literally substituted for the formals. This is

like a macro- expansion or in-line expansion Call-by-name is not used
in practice. However, the conceptually related technique of in-line
expansion is commonly used. In-lining may be one of the most effective

optimization transformations if they are guided by execution profiles.



-

- r". | '}l\l (T - L

J p |
(oDE Cip NERATICN

4 T e .
{T%““ D The Cﬂwgn ofy o tode c]’benmtﬁm — Thx 'fmgp(- i thi
|

| Rz,.{,n-Hm Stomga ma,ngerrmlf‘ — Basic blocks and "fﬂmm Cimrhw
8 16 |

Nent - use mﬁoumo&ion e f)imptﬁ cOAR (fe,rurcdoa f-?ongﬁm
| |

allocabion and m-siarwww& — The dac[ wmaaun{*rrfﬁcn 0{_ hov 16

plocks — Crerwratton  tode rom dgo},ﬂ

Inbyecluttion

> Tha %mad’ P_P_\g/n O‘E e wmpﬁgw 1 Ha cocle gjcmmh‘cw P‘h
-

e eode (JQHQTCB&D!‘ takes the  «ntevmudiode eode Ve isehfe

% the  Rour pmcjmm s 'm/)u,t etnal __p_wd,ut.u an  quivals no-

'EQ_.TE(E’E Pregiam - ov wftpu,t

T i o ——

Mo e e

- (The ﬁimj)wf.r"c vepresentation B ghown below,

Qetiree {v e _
EJ 'Jﬂh“ C{!&k ) i
e : Cocle ln&rmzdra,ﬁz N T ﬁ
T)fxocjmm / PR ey ,-——-—‘--f—_h_*..,( ode [ foagel

Lﬁfmmf"“ J PYICHGr

o i Sk PESNORETEN
| F g

bflfi B[.Otk d‘rurjiam 045 Cooe ?Qﬂj*:cdm«

Scanned by TapScanner



D
-
C
©
O
)
o
©
—
>
O
ke,
Q
-
C
©
O
V)




a " - mathine yeprusentation - Stowk mathine toc
wy;mz.m!mﬁm o8 .?gnfn-x frees , DAG'S .

mlz gammim munlbe free of enois T dom
Em&kmﬁ & done tvﬂmuv with cod genii

hine Qonguoage o " ouﬁpuﬁ that i can be
R A gr&{ _ﬂ@ C_mﬁ 2 Q')U?_. Eid’
rmmedfetely

_. W and PL/c - eompilen That
wodutee abgolule cods e faoget progior

pmcamrm ean be tumpilﬂc? eene!

o tukzd zﬁc% ff’,li

nath .Eo,n juage -

'#f ﬂ

5»6 mt:LPCmg veloeafahle mat hrng
3

mtpuﬁ allows Sub pma‘ramﬂ

"i_-l_

Scanned by TapSca:er



Joadsed o7 ¢ ¥ aeules. 4
M s , W 1s P&H!i‘_‘ru & »

Ceun be Jinked foqetiur and
ﬁtﬂ, o i{nwﬂg Joodet B‘f
-

P’-ﬂj‘am fmm an
objet m oduals

'''''

Scanned by TapScanner



/ thrw- addves  Afodements hove fo he eonvertfed uh ko veguired addre

| :
of instruetions Thiix Mo LS & ame i botkpatehing feehnigles

-» Ltk W assume Jobels Tefevs o fhe quadreiple AULLMUDE VS
a0 e quuo\‘wupu oy \
o CJWLR Mcmnimi 2o th quachup(,e, oo eount fw:u. fji{rl
mamtainel - for fh’frm? the List of dtjmfbofs st
E—\hl}) QOLU'LL can bQ F(Jl{)[ JLD CLLLCldm{)[,Q Qnﬂ,li
> g when e encountey
j:ﬁﬂfo ¢ 3emm,ﬂ'n tHhe Jrstreelton s -Fﬁr(,[{;luj_g_

"J[ f*’*j , (e bae kevave! jmf.
— 3@!’121"61,& o j’ump op St Hon wilrh the f‘C\T&fE(-
addyess = maehine foeation 0'6 fhe fmf inshuekon
M the code :5o:r quad’mp& ¢

1 CZ) (o Jorword jump
— L Mt Stove the focotion of, s $iwsk insiru
rfov quadra{)u .J an untd'i’U./)Lﬁ t's dust. wWhan Lu:;l
Moes) quadmpu f,oall Hhe inshuetions thek vefen

WMMJ Lo coktorw ob L 07 %Cu,acf, [

]

4. -.Jf | .Tnsh'u,uhbn jQ&LHUﬂ"

- The ip Struction ,%LtrE the ﬁwcdd mathine deudes fhe

i

tnshuekion Aeletlton.

Scanned by TapScanner



Scanned by TapScanner




Scanned by TapScanner



Scanned by TapScanner



B i i LT N

- b
oy

‘ mMutipiteatio Mutyieetfon W of, fe hormm,

S|

"Iﬁ.. ;1, il even TV ;
o B Mulbiplicand culue baken rom L .

B Nkt sk daken from edd 1e3Y

4
¥
! -
= 1 &
- 4
{
. ML
=
§
o - ;
= s
wt F
- i
¥

= i
s '

i w 1

al

Scanned by 'Ta‘pnner



— The rstiutkion &RDA Ko 32 8Hjh th dincﬁqnu &

cnd eleavs Ro, a0 that ailthe Hil equal Ie) ngﬂ it

TR store and R Yepd
= fﬁtfm Loud , ST Tept¥ A i wbm’l

D 'HLMH te Divide

Choits of Evaluakivon Oreler i
~> “Thy Oyder i i i 45 (0NA ’"J@. (NSt ytee b
' ovelet o e eaPTLASLONA ([ Yl bt
4 v of evalualt : % 1
PMLLL-Utﬂ) i b CLf..f“E 1. ¢ _h_‘?’_ﬁfff???.%-_‘?’ﬁ e 'fClT_gEff eode. Bukb
rm'n['ff'?fi“”j the bulb order W an @Pb’rmfm&r'w ﬂmﬁum-@ ?#‘C-M
Hm_:f Problemrys are VP € omp lefe PWFULP”"-

4 jmﬁwﬂ’ twe shall avoid fis pmv-Btfm b% cgammfmj coole. .
éfm‘ e FThreo - addriss Sfedemrent b e ovdles fn wohtch W%{ hmi

bun Nrodueed imj e InFeymunltal eocle 8Qmmﬁ:a.
/

s e

k.. , G Ji
A vﬁi/‘*m@'@tahu o code Grencratten -
E e L S e 'y e

T e —

— The Mo st f'mporﬁarr.ﬁ- £y1 Rt QN -jora to de g?m.zmww’ it

AS fhat JE Rmd,u.t@ corveet todle .

~2 @_W&Mw takes ¢n $pecick Afgm‘if'fcmuz Dottty p 55

[ -
iy, =27

The rumber % Special eases That a toce ﬁﬁ,mmﬁw might Jﬁﬁtfi

1 ' i ' : ) (
(Qliven 1A PTEMIiL on tomeekness | du{fjmr‘)j?a todn

ﬂ%mﬁ"ﬂ{ﬂ}}‘ So (b tan be tasily toplemenled peofe

3 : ! o A PO et o /

(chat

D MR S e kw4 B T T —
i " . s e, o g =

-F-—l—nmh-!ﬂﬂ-"ww'|_wh__‘-.h P

L

&
o L
¥ . L] K I"hl.
i 1 W
4 1 "r':i. I-".'i 3 s = TN i E . | ! ....‘ w
by .;ﬁ-' y --“.'_ - » :-" . . | h'
'."'J_ ‘i‘::'ﬁ'}e" 'E!;.' ) Y i : }" L

Scanned by TapScahnér




/)[fo’f (A "‘.f'{f fg(:-f)* N T cocle

et maehtrne i

703‘ 89:'12:’{1#(‘)? a ?mgf c‘nd’ﬂ /0: a fc:r?/
(
been

instreceleon el s Hw muwmwfe whith hou

2o usedl wneley ol Phevent  ways

r H
Vi ioNg rﬁtf e hing c:{wm;/:. r“ffﬁ?” b? i e

i
J and THe OPEml*mg 5«".:(,},3(‘9;“7»

F: I} A }.-5
LOet. e —f@mgﬁ codr c&/..rzrd:
rrwfmufrfcrﬁ cost

on e rnsFrutfron

i '8
. " E
i “I'p n a ﬁ‘

ey nit B S R .
SEROC R | ‘ - ] et e
Bo%L fpe , addveming mody e _
. 5

A R nifrietions & /(3 TLU'W,

e dresschle
> Sinte  the fmgef mathene 3 . étjﬁl addTess

enerat
maehtne wifh ?{mfr bbﬁfu o o word and n’ 9

i
|

; 'E”Qﬁu o Rel e, e R
|

i ¥ [The Jnstratfion g prmal A4, !
. l:‘ f . L{‘}/) SOLLy ﬁk:, C€L ‘! PNt }QT 0N /

e Bl Lol ; e

?ﬁ:_"r I Jl
s |

Souree , clesfrnatton - vefen to data :sb’ft“doﬁ/s :

: + The %-800& hfp,u_ oL O {o{feﬂuﬂ,

e MOV ( move Aeuree fo AestHnation)
. AOD  (add Aouruw fo dwtination)

« SUB (Su,b'f*rutt- Aouree }Omm C!f,u-ﬁr‘r?aﬁ%omf} |

> The Sour and  dwtination fields are not ,?cm? énoug)
| fo hold memen adadaesses

Scanned by TapSc:anner~



i . P p AL A i r =8
* Aﬂﬁrr‘r‘pu /cf?q*ft J"}’“c?fﬁ*’ﬂ“ / : K_LZL.'
. f 4 WL -

— Tne farget cormputts cwfc/””/ pas Joad

m | y 0D ey fronNs . o
: ('Qm/r}umfror‘v cp@mfrcm ,Jﬁ-fmf) C/)

condrfronal jum/?s,

are 3

E}D@ rafitons

s ]
1 -
0

N -'::f',
. : , * Tio B A e
= Pt isa byte - addienable mathine wiff B

¥
1
4 ¥
J
o
R
W i o
¥
'|| -_

purpble - e taeEs Feeeh mathenes i&n?u&?e has o
’)‘ip“fff[ S4f CE I NSTFILLE Fro N
— Most Gg e Insfreettions  consisets cf an a/wm%orga

N -

| { ! . Bl gds
%@rge‘(f ﬂzgufew ay Jocation ?Of@“ﬂ’ﬁ‘f F)E{ o Aust CE &y

e i s

C‘pwcmcﬁa Jome DE e fE;{rchOm ane aA Z{C'NOLUL

1) Load Operakons:

/] dest € E"HQ({MTH]

e | & D e ceelely,

e

f

_.._""' [ l' it. ._:: " o Ly
] ﬂ'.' I
L

| - g : r r ‘ f-.'::-
- This instreetfon Joacls The cgm‘t’“nh{_ G
L_J'C caHoOn acldy  nto doeaffon et [ %gg B

P '..'I. .
-::'FE_-' 'l ’
LIEREY Y

+ desk <« eonkent n addr.
S ULD. wea  w A reg <

- Thu ndtruekon Aoacls 1Pu r:()r’f

. ” 1 = .
D foealton ¢ Lhfv M?uhs w? ol

ol
v
F i 4
- =
1 i
|

Y I TR AN by Yoy
- J &8 yeo!, a2z [/ req! < reg .

o

[

| —— - 3 j
-

o i | - ] i
— Ty mdrrat/ion Aoaclhs tie v ALk

o 7?5::'5!-” 32 «bfo Hagiu‘-r: 3

3

Scanned by TapSanner



)T Unera ons |-
[

(8T x ] [ x <7

— Thi inshreeton Sfores
r‘nf_o e JOL'(I'ILFOI’W K.

iav veeleves 10

regu tr veg
e L AR S A
‘ &P At g,}_gf/ - // eyl e 5‘{, o F S,
~Ths @/Nm'ffoﬁ /rt)wt‘l;wm; aay: of)@fraﬁ'm,;f I
Th 2 V)emﬁbm Ineluote

/ipacs‘éi@d bdy 7he @ﬁamfm OF.
; AdY, SuB ,MuL eft
o F)ruj @/)_pmHﬂO A3 /)E'ﬁ'

; ) A natton
and 8y and is dfored in the ik

émrrnﬂd on oo sourts

Op?m,nah 5

) Uneondifional jumps ™ ﬁ

[/35? L / // wneonditonald fum)) - gap =

_ This  inctroetton makes the contiol to
byaneb +to tpe machine instruetion tolfp (abel L

- V) Uneondittonad  fumps -

ey e

# ‘_\- S

E e &

Scanned by TapSaner



I e D dd ﬁﬁfﬂi ey | , 4
—4 o t/[) S 1 -.DI D ‘5{ a N / m Hu X ‘

g (Thewbrre @
A/)eu‘é’r‘ed By wmbmmg

coifh The address - moctes

— e — -

hos il oD ﬁfﬂd"”wmj 'l

- (The 'Fr_wg# o ehtne
06 th e g‘p?ﬂaﬁ’?’ oY

(77"@ contents (a) odenefey 1HE CoﬂfCﬂQ
Moy a ol o vers 'ﬁ’[)a”ﬂfﬂfﬂ'ffd /Jg a’

x The addm/’smg mode apd (G eosts or asjo{w

 §ohe HOdi P o5 rro  Aderess ~ Cost
LESPRVAR A 0 I
eguber e . R o '
Dndewed ¢ CR) e+ contenb(R) | ]
Prdene AReqisfer | xR con tents (R) 7
Dndivec) indexed x C LN, tonten (¢ + ! :
Contents(R))

Scanned by TapScanner



> Y Ao v ¥ (R), M

R

Lfoves fThe vabter Lewphants (4 e Y

INto MUMOTY

(oeatton M.

[

ez fhe

| 5
Y "-”Cj sfer KO

S & e

e S — e —— SR e —— B 3 f;er‘l Ili
aie ; 1 rt.:' ({ fﬂ{’:«%fﬁr‘#{’f » |
Y - -+ CO f{ 7& y SO UL

> _Ihstuekon tost = |

it hoR.3 . Instruchion Costs:

add yexs modes | l{
| | FA DE |
| bo Fhies ALRGITE TR :
> The insktetfion cost (’OWE,%}’)DHOM g¥ %
l
the  inshreet 00
IR N O eoSE 12¥0
> The acddreyws mMocls fm‘f?f‘fmj' T?_%“H” have €o§ ‘
: . t ‘ O
wohile those wilh o premery localtton Oy Liferad have oSt
- ortr 1Hhwe
$+ KoL ean Minepi s FPe e fa ken fo /7”5
rafruetion  wifp $ roall [eng7

s Frece Froo b(j E’ﬁomm? e CE
orfiHhm shoold _ng_?_ﬁf ne ra
mamcrnj

#. H hﬁ_ﬂg@_ﬁ_pgﬂg_ gemrm—r‘n? a['j ,
AR e mcw'fmfj the conkent fo
& Hun “fo negulee

addr mocke
F;‘J"?.ﬂ'}r{f’i =
mly , constants =3

't rnyolves on E.z‘,

duplicating  Steps

Joeafton  &nd then i’”ﬂff“‘””fj

- TR MUJV' Qg '\F?., ¥ h&/ﬁ COgF' .@ﬁﬂ ,,gfnu
' ."'"f- 0y

| 2L wcg/églrtvs

P T R hou togk 2 gihte 't has Mnemoery
< (o eatton Y1
3’ 23-' ADD &1, Ry, - hos Cogta , ginea i€ heus AR
s Corwieent Y olies

Scanned by TapScanner



oLk 9, Siek ho h Sou
Lo suB §{R)*h () - has codt
Acstrnatton o/apmncﬁ hawve c-unm._

M by ;:;-E)n - :’4 |

S f”u/ b ‘\U (’“u)
,ndﬁD e, H)n Lo (-C__g‘f & 6 Yon 2, K ! 4}y
Moy R Q pPlov 95,0 ! 4 &
0y

5 Moy b, a |
— QoS =6

X NMov SRR = 4
P DD R Ja
oy S £y C’C‘f[" :‘f-;
MDV Pr; Ge
q .
H‘OD P"D,r pf
Rl AT g L EaNA
Mov Ry, b

. | 4 o
t=3 'ﬂ‘)é’ CM'f agsocicted wifh caeh and erery 777‘0% :_.:

and yunning e o gramm. The tormmmon [ﬁ’é'*} "ff."'

ks hf o ':.‘1: r
‘.. P - 1
-|. ' i L e

L the Jength of cam/):‘[a o frnu and

ot

....
I.-'-f.' Th

Scannedy T'Scanner |



ﬁ--rr-_:ﬁ_ JfE]IU'i?{r - (A | (¥

morrw ST EERG EE. o Trwme . N ¥ - ()

-3 ' The f“r"‘*:—’:"rr“-r'rh"? (oemartics ) of proerdieive in a kargud

#

Bgpi  defermines hew hames ave bound to Alorage cluxfhg £xcct

[ ¢ ' Fa AL ; . CLLALE Vi T ¥
) 1J r-HTI ': P; 'F} 3 q ;Irr |r \ r '_'- | 1; i’ Il-'|lr| J- :I' i II::,' I“I [ L N L {
P ,.p-r'.l.
b . . . { . ! ' (7 | "rf g (i '
YV eeciure s kenl £ SINNE (0O Q |
' @
ll L
¥ ¥ i i ‘ ,-" rr}'f:;[rfrp*r'lllr
- f ] & 4} i Trr | l"i | i i
¥ Hagery wo o Magp THi sp L0yt
mainteining a Olotk dJdlorage 70 55 /
; . A 30 o el e
q - ' - - - -'-I, r’lf' S In"-'i .__L J ¥ L C T
?‘r?{_!n 4 d A L] ] rr..? (L) £ AELR C g f

oy P\, | b oo -;fr“-'r'}'?ft‘!r’.’??’:ﬁ"i ff'f CQ
+ VE eontfains fhe r{rﬁfr”fﬂﬂ [{ kg f

P

y (r‘ﬁ{z\’, :"f‘:/::-iffi‘ff- »)
olaka |, gaved maehine Sfatus ] o ey ,-

vedfrriud YO Lece

* 3 o
] P | . T L]
X g i L 1 L N -
] | .
- ]

- 3 N e oy > : . ’

" % 1 - - 4 PR F

o k I ’ y L - A
i .4 a § )
W R i ¥ = - A
Ry i — I t
o — e d— T . i -hl—." - 3 -
.

ot ol parame ter1 ancl

ik .. ‘ s - | -l fo rmanaog:
S8 s Uh this. phate | the coce ML oX: _ﬁi’ﬂfmﬁd ‘ 4

¢ st , 23
Fhe' getivatton vtevrd at run-time

: (. ftatic alle eation

2. Steek alloeation.

-é_m-w#n seloeal dakre +em/70rmfe.s

-
.:,._'_

nolys Jinee 1he yeen e allocatton anmd cleatlocatron et

.,
[}
.1
.
ey

il
.; ]

s Al
S

15| adttration recorcs occur ou part of the proeecleere call 2
f Yot A er?u_m LA

a i LY : e - ;
i b W N [ L,_L‘-_":—-}::-—-H-H.-..--...

..

Scanned by TapScanner



asSoecared CLOrFS

¢ faferments .
LJ}% vehH QAnre ®

—s Dhe  +hree- address

froeedinre el and  yeftrn Aeq uen et

affarcrfirm fﬁm%ﬁgrﬁ% e

= _,_-1_0—-

x_’for [ ﬁgfgﬁ?
x eall

£ Yottty

* hatt oy
| g 0 F\N J‘ &b/, |
¥ GO vt E I /DfCtO? holcler for f 3

— W awsurme hat yun-tHime memory s dlrvrcled !”3“0

— B T ————— e — | — . —

ST i | - - 5;?
- €0 cle
7. Stabre clectu
3. Srack _ =
o Heas, | | H} :

y (The 4l and Lhe ,Przyor,w 4 e . atHration E’F?é“‘

ave comMyecnrcatee] —fo fhe egde gemwrfw Tﬁwcg?/) fﬁf_ u

I"'

mzsormaffm abouwf pames that g pwwnf-m fhe &ymbaf f*
Aedul, Sh‘lhf AH@ fa}-rgn s *5

__—d--_-h- ---—

H-

ih
Eﬂ

- fﬂ') J'faﬁc af(ocmmn ’he jDOﬁthn ﬂ'b cen a("trmfr. ‘

ﬂwrd i men'j LS :[rau:o! at eomplip e
“"'w.r- R

e -1 ;‘ 1 5- . & 'l' .--r-' .: ot

m!&r U a ope who makes the catl for o
t{ -4+ = | | fegi

f- ,'.-
1' ‘b* **ﬂ ..l'iiv.-"

4 ma hm the rw,umd ol

T
et 1* '-5 .- N
'. N Sl asieiauil T 1 . iy ; "Fi
N L . 4l ] r. . T
I ¥ 3 = fr -.“' =

'! 4 _._.a_:_"lr L
T
'r

Rl S e
Scanned by TapScanner



- Ao call Staterment, /n 7He  infermmectscife  eaar) AR

.._-;;-..qﬁm}-/.“f'if';fniﬂEécf 6g Q Lfe’e?teprjm 05 fto 0 /Org ot moaochine

LAl

l.‘,ﬂ'i‘ril‘ : : i
o' nutruckory, @ Thatl is J

. - /

GO TO
aeohare,
S Mo
R
o e W g

/

S | Call . Stetic- area

I_ L] -
E o, r ot
' Ayl | 'r.‘_.ll'l
.= " st
. L
P N5 . 1\
'8 | "
I v
#
k
:

: hd i, .l.
.-._‘:_._,.:;:|L . d

I

. (

:'. ':J. - |
|

4

-i+

-

eulloe code — area

Liﬁhff@ - d PO

&0

e F.I,h. I".‘,
2
P Do
whdinitar | .
ri":_l.j_"-. .l T
‘l. 'Tﬂ. " i
- I W, ‘
T Bl SRR 1 Pl
7 Yoy E\(,l‘}\', Hhrede , tofles
it :’_II-..-.E': ‘:' S];H;”: o Fogfd A .!3
RAE o«
e e
aan. | Ge fo
. i ! ,Pﬂuf{lf {“d-ﬁ-m‘hﬂ:.. P

-

¥ i e

L "Iu'
" I. -'_" W i
sloik

e, "R
" . 1

¥ .|‘._'

i

- /nghreefron gavray o fhe

— nhetheeetton «‘mrvab?rs control

& &: /'

MOV fery + v, caltee . Stalit — ana /

.'

ollee . eocle — arec /

B — S —

—_—— — —_—

yelerrn addre’

tfo Hu Farget

Coole Zj.m fhe ealled PTOQGC(.UW
_u fhu atrribule ) That reper flhe addres

"OLL the aetrvation 1eord.

. ks 3 |
— TN the acldres oy AL tSE [atrecet

of fhu called  pvocedttre

— aetun addres (re. addrers of Hru |

rstreced o jo(ﬁmur‘m? the GOTO nskreceff |

b UOOTTS  prde /Sy,tu (fe. Three concfant

callee . Sfafte -antg, cofle te

/)LU/S od fiﬂ&’f‘m_fH‘c’ﬂj Yol y Y] eaufhﬁﬁu.,--t,gc)

| (Mo Ve ef Geoo )
Cost g > words or @ O Byfdj)

Proceoles e

> The wehun statment , fromth

eallee 18 fmpummfeo/ bL/

S

e

L??Lﬁh’(‘ b OTEE7 |

+eallee .

—

Scanned by TapScanner



e, T OAS cﬁ-o're
it v TROYE e 2o
%cal(,u-&'hfr‘fr f-he C;(‘HVQ?.TUI"S‘

; e
| e

Sing peTrory fo plervient
) N e 508
_, Dmplemuntution of halt sfatemint, -
(RRRERT Lomhtalpnt £ nt of CatiEes
/ e

R —
i S I =

- Consicley 1w Soll Dw'n? Pc@f’,{idﬂ cocle £5m_ﬂfmﬂf The Cl

Ewamjﬁe - | | y

Codles cm}n(? Stattc affomfr‘m' method.

"n_‘ﬂu —vc*tcfcff exs (o ole /for vl h'tm ﬁwrd th r@ Fon wcw"‘
7"7‘”' Cfeﬁrbjm} _mep(&-gb |

Scanned by TapScanner



. fd .a’fﬂ f,i : /k[ LA ;?*)LC??{ fr'uﬁj [}3 ¥, f[((f{y@ 4 O(% Cltole s erse e

'h-l'l

s ale B I0L wﬁpuhveﬂy (R Tre , praco.

SCrre s
o ﬂamrm eaeh aeflory mgfreeetron fﬁ*’*’“ Z 6‘/

e N . A , . . g rf ;f(ff [ |
3 ""f"h"fi‘*-'fa""r"*-*? reettyaifor reewrcts for fAn  friocectu iy ane S /

H—f) C.nt

.:HI;.I iy / J(’fﬂf"ﬂﬂp 164
.,.".--'QCEE'MFOOP ok Q#mfw’ng addvorses 3004 364 YeA &f -

((\hﬁ f‘C?TﬂfE[' eocde o g Lo 1Hhaee adcl reAs CC
:i "“E-" hﬂ‘ wn  befow,
// code fm

LOD . QCﬂONJ -

Qo o MOV #tho, BEh /*‘I fayexeturn addTess (5O at
octivafton reeorcl c;zf ﬂff/
o & ACTloN

e BT

Jop . PRTION,

0 L For
ARL | GOTO " 364 /J,( ve Hirn 1o oo delress So rgc} [ LDEC:

S bk

/l 800363 JIIVIRZ e oatHvakon reeord fov ¢

i ‘:?w 3 /4 yobarn GddTeR £/
;‘ M 36k - 45! holds ctHvatron record fov. P
S [+ veteurm addres +/
EENE /« locad dlate for ¢/

Scanned by TapScaHher



# ! ff‘\_ ¢ H;f"“‘ ..;; r’ ' e -’ﬁ:‘

|
"

| - ) | ':11'3'"" "l'{.i«t
L e f’f\U y) ol SRR

% -S?’[’T ;“‘ | ff ( f[.',-i ¢ f-—

e . \ R St D
BT YT/ ton Yoot PP

g - -

Scanned by TapScanner




e g o
R fih f@nhgf S tH &F’Oi
k §p and Ay alloeats The % AR
oftiplidre  de¢veMEr -
ATz 7 €
Ry el rpwuzcl.u
Ltovd of fhe (e
h Eg P < tSlP ¢
2 LK b
& Difoizakion % ST iy st )
i P Dﬁ,ﬁdxuqlf' !Qlfii,_,.——f S
e 2l fr‘rff-' oGl o 10 & 5L

LS

Scanned by bScanner




i
o e B, T

A :f)mprem.mf:ahon ipamm J‘fm‘fmtﬂ (ﬁ'ﬂfi
=% {H"? ﬂltum zﬂé‘q e ruLe wmuf-j‘ 0y o .

D Called PFOLFCLLIW Jm&e e

.......
------

#_Example:

@y M ¢y {he thres-g @“ 2%

/% eode ft‘r & *isk
acefren,
call 9

Scanned by TapScanner



Scanned by TapScanner




e —

//fcade F o /ﬁamacﬁmf q,
300 . PCTION 4
390 | ADp 4 g 3) e , SP
S M S D [1 pPLsh aeftrn adolyess
Sdb 1 GoTo s | A ealisr :
S R #q 8w, P

A5 ACTIe Ny

8 TR L ED P H9size, §P

ST gt 396, 5P ]/ purD aeferrn addvess
gﬂ” BT L sy call g '
394 SUB g size 4P

hCh PCTren

"3 gy

TPD A o cizas

'[‘f.."?a’ HDV #/""Atg, 15)0

/) push aederrr aclclyess

HHO ; : ¥
@070, gy /I call

ARE Sl s Y : 15
| B #9siy, ¢p - -
Am A X %'"

o 'if'"'.-‘

L " s =7 58]
o 5 e TR T
5 a1 -

/f Steck Stusts Beyo

PRSP PR ""-'-‘
ot e WA o P
J'-# .w 'rf'l:-f ) t_t": -{.'

= o
=L

R LT S -ﬁt!--—f-l-!-. i

Scanned by TapScanner



d r,xl_'ilr i 5 :
:Efl__. .,__" I-\. W g - _-r 5 . . 1 - L & ! - N n ] § i k. | S0, 1 N .{‘5 k 1y
m s P MY ™ L | . } i f | . [ | ' ' & W 2
Y il:'FL.r" I . LI LITITIA - B ) 'y , T Y e ol . % . i s % ¥ ~ TlIITr . P o 3 8 .  ~ 5
e 1 ! 8 T N ' i } i o . } a i " - P i Fir | N i o - > AN - i AR - ¥
; s o b F E : el | . i il oy 8 al i . M " 1 [ A 5 ) E TR, = B z -
R
L & -
i -
s )

q S
-

Scanned by TapScanner




. Staning o MU S
T l\‘x‘mh‘.\l\ AL l‘l‘\Lt.‘,’\' 1\-’2_5;1,1% ’*hﬂ mﬂa"_ {(1 D l d

A h.”_”"fﬁ“f”m“ 0 ml{l.[- S oD 1he aVPYﬂ?E Qﬂdu{)f ﬁﬂ:‘wz‘r.
\ Wi | o unt -+
[,1[ o mkumﬁu anw

g g"\ {]QUI\"O'IH?UEH[?NI(‘”qu f\\- H[\npu ﬂ_,nd wmfh ”'\9- ﬁ

. . ool

R (ﬂgﬂmg bl oy rcnjmmnnrr (ij‘mmcma oﬁ (r) OFHWMJWW Pf 5
T ' Yo AULHonN:

> The fﬁ[mmmm Pf\ fhe {mHtt code oﬂlpenou on 1he %

of wnmnq time o the pYogram j
]

ab-all lovels
sy Tha o derw fn! rml‘ﬂcvmﬂ Fhe W%r@m

vel .
from the Aol devel to mcge[L ke

~3 Prpydey b .xh)jmﬂ The p~q~rrjm’m0ﬂ& Df) e wrw;nfea’;ehanfs

tan be mde hoth ab fhe oaer ind (sodres) os well an fhe

tempi[n ond (fcmr?cf’).

Torgek
dguree Tfrtmﬁ /L ,thﬂmdraﬁ ){ Gl ShiE
eode "'L vend ‘
| f ;
| ﬂ g
Layky Lo ((:mpxlfn ¢ oun) {GW’LT)IUZ'r can

’:;;f Mﬂ,,_ preg S, d‘ww%x cropaove L6ofY ottt LS ﬂg}kfcrs, seleet

B} dlgprithen, bioswpom lops  calls, addros cludgfeo  iutuerion o
| el Y i i

ﬁ plaw e T)r,fmeCtE ‘mmmmb
.-;j.l.-'L.- . E)Ka e G (Lﬂ@‘ W\X wmpiu?

Lafrer
- Aayel | T vt fable ophom fall between e teo

ﬁdhﬁl ﬁ-r)lﬁ’?'l OL or ki ! [‘ﬁ rmpmﬂﬁlﬁﬂg Q ﬁwm Olngﬂﬁmm
. - q il Potoroy mrHRYALLONA RA P{’ffﬂfWJ

Scanned by TapScanner

f




‘ | fae usey ond. REV S VL L an 9"*" f:LCrJC v R bE (1 W 21y ¥ QHH"Q Ve

e -
AR RS € R ) i

+ im'f;:la- .Pm}mm
4§ fhcmgx [q,orrffwm
'“ ; % 'ans?tmm ﬁC‘C’PS : 5
i wmp\[u end . At fhe lwffc

4 pme cBan?u coun he made ab fhe
| robermedial .ﬂﬂnatm.%,q Jf e wﬁﬂ.p?uw Julg !m,m?ﬂ;

1) im.]?x
") MD Lt talls

i ) Addvess ¢ at ealobiens .

warpiler to wse Phe mathing msm;er&v A wmp'm’ tm
) (LARE Tﬁﬂ»{jf"f”fﬁ {:’ ;’ I A

,.J

) gelett fnshiue h‘@ﬁf’ “ Y s LS
W) do _Pup..ha[;,: optimtzations. (franrfomme bons)

. 1 % '
llllll
- . il -

b1 3. F—m @raﬁmmﬁm {M an @_.{:fmmnt ;

-3 (\m tode mprrnvew\f Phw cmmsf's 1

vt i‘{ﬁ ‘-4 ,-5 - , : .

..............
] — -

I
o

._._ ..; ?

.""ﬁ

Scanned by TapScanner



I — 0 eede T
 farge Jvoe
: - T epde ﬁ@mmFW VTOL{‘LLW the 7 j B

B
y

3

L

E

DPETmer infer e dfale cpole :
'fﬁﬂ .-f@%wmg aaYme% e

- :
t g X -_ I
| [ = ... 1
W e R prr
¥ -
M |
o8
. ¥ r
- Ak

. The organizalioo hes

(eastf) ' : e

,&9 (F i poﬂrb[e fo eptrm:m 'fff’u:m 3
9. 4 SThe mhznmdaaia code ean be rndﬂpendmf wﬁ

{U'fgtf’ machine, & fhe 6/Dfrmrm7 doornpb  Have

d DY
thenge muth, if fhe code 3wmtoer L3 a’ﬁ[ﬁw th

ot for o differtnt. mashine Wil y

R - % |
LA, | Pl = -
. . )
B

.
.

« Dt cote opfimizer, progrumis an. aprntel B, o
-:5{9&7 Ta{)h& e DL,"FHEF) Edge& rndicalt fhe %ww &.f wnf-rv‘[

nodes  wepresent fhe basic bloek

%f
%:

i M
- (ongicler fhe (fgf[pwfrg ¢

tonshuet  three- addveys  code J Juentt

Scanned by TapScanner



Scanned by TapScanner



o
-

T o I i e T T R
b

() if te >V
(r3) i s = 90&5
U by Tk %
(15D o st el
(e) by = 4w
(112 be o2 L,*j
(8> = affs]

N

et 4
W

. #F
fos 1 Y
V" N 1\.' i’ y
e = - - -
i s 'y 9

bloek s shown

Scanned by TapScanner



| \p””’“ *f Optirnizatfon

i S
— e —

| o . CE s e DICU VGO
T}*-i’a'ﬂ oyt Soveyod swlhods 708 mmfwmlﬁ‘f{ the P l

P aote ephmiiee LrAc - - A
=3 i*’u “hanw}mmﬂ‘w muﬂ By ACH 5l hj : |
)

L

0 Letc& — The tramsfermaleas can be praformid brj
iwkiﬂﬁ @n,hir ok wlifite Ef‘ahm.ﬁnta,g_ﬁﬂﬁ}g

basic  bletk
h) G" [ffgd hE ‘Thﬁ WLTCLM-I_ETD’\&%EC@:S_{JF)EEB iy e Phﬁrﬁmd

at move oYe Fhan omp\f){fft bletk r& eoul fecl 9[ .
-3 Mamj *rmi]ommfiwm ean e @d al beth

m*zmca cns are maually perfoam

the local

.......
' | e

B 3 e

Scanned by TapSanr



T —————
Yo . c ino o
1) Commeon Su_b Adv LSO _E;[_-_'_f_ﬁ,'-[ s Sl

(

5 A ouTriny ub g wp'sewcw
YM‘

ngujisf ond Tni |

; Q\U}J PW{WEMIU{? ; ;f E LUB'UB Prnnoujhj _
3 id ﬁ(f the Nkt cﬂmpw!ﬂfi’ m,-_;‘:_

vamiah(v an E hot net bun Ehemcj

i Jox og
b s E’,omi‘du the bam bleck Bs 4 BE- tn fhe.

of, quack ﬂmf.

v Do the rff@w'ﬂmfb btk Bs hos tocmmen. |
Q%pvmwns hkﬂ the wmpuhtf'm of h#t and # *] bld W&x

yoriablo b and b mpuam., m&emﬁ“ﬂ % ”

Scanned by TapScanner



BE

. =

=ty

T ‘Q[E;.T 3

2o LWe .

R
#

Prg i pen o

i is il
alba]:i= b -

Eisi= p&n :
“albis]= x
qu)};n_*

i
|

8w we ;\um Aeminalid the com

_' f-n
‘, * f‘#

& 1
L & =
= )

.

Scanned by TapScar



i *i-_

> ¥n thu

{m, graph, o:: afte] can be Teplated by *- i

) Copy prepagatio - R T
st el
Mfﬂnmuws ! J woill be nplaud 53 ‘e’ (his methed s =
called o @'LP”’P“ affon or wpnj stebernents armp‘m A

> The proess of the copy  popagalion hnmbatmm

g fer £ whevevey postible ~after the topy sfaﬁm.mtj.
- ‘Thiy will @m the unneeiany Msffanmml'

Scanned by TapScanner



Scanned by TapScanner



iv) chiaut _rjo_?dm

f;vt Sgripe] :
| >

r

i
F
r
Hi-
3 N

o . The, subwitubion ‘of rdnuﬁ-r

>

» T
' .
& ’l._ r
_ il
g 1 - %
- ~ 4
1} s I_.|_
. . "
£ 3
- 3 L ] 5
i " ¥
-
e & .
™ |
q d |
]
Il - .

are rnmftnb o m-n ﬂ}. ey

Scanned by TapScanner




‘-; ﬁ-’!"’iﬁnsfwﬁmﬁm taKes an E?LP'J 8500 fhat H‘f&f’dﬁ e

LL”.' iﬁdlpanoi&n[* ef the nuumbes U.E N o derp s

(G& .E@@P-H"*YDETT{ZLQE wmpudu,tm@ § "platts h‘me prﬂ‘r’“

m "W\Q 'X«DBP / ‘«4:1;1 'f(: (F M !’rﬂf |

%, t\ ‘
' ﬂ | "
\ ' . .L ?Lw’

¥ \:lm' 0 - e
B-a ) ‘P*j?\”,ﬁ ( ¢ 234 jl‘ml‘E K 2) . .

{ ["73" In H"-ﬁ twohrle S‘{H-aa‘-ern_@fﬁ

0 eorn piles hw& fo fOM
.3 cath Hme The T&&LL 8 7

ik -2 O o QN?P 1f‘fE\a‘*

— fore the valualito & «Qf\

Scanned by TapScanner



Scanned by TapScanner



E |y gl

= M
¥
o
»

VAT I
Brea o ava

-
R ro
R
2 . ] "'.f:‘:l W g
v o
LR o
gy LY

- - }.‘
=L
r

¥ T S
- =

Scanned by TapScanner



Scanned by TapScanner




Scanned by TapScanner



=t Pﬂﬂf Cﬁbu%irﬁj fﬂbmrﬂc&fom ;
e b

| (P&Ph@fﬂ, thmLiﬂhUﬁ S\ Fo th‘nc{h }ump OVQYJLLFWP.‘&-» {;f
no muter what fhe vabsis, ) dﬁbug‘ o fhe {hred ‘addiest esi
- be thangﬁ.d oL %@’UDMI B |

'f Cﬁﬁuﬁ £ goto L2
prink C&Bm%ing J‘r\ﬁowmﬁ‘vn -
e 1
.;'w@w .5fn¢ oubug ¥ A‘eﬁ fo @ cwrm Begm_‘

¥
..

- -
H

-] ‘T', 4
i
"h

"
e
¢

'- oY

| . ﬁfopagahvn Ahowld be TY sn» : ﬁ

Scanned by TapScanner



4 v - :'.. L 0 :'_ - d 3 » S O VS -1':.._ T I y
F= § 3 ey e - ¥ E . 4 i - AR Ik i ;
= L oy - i iy . - T 1 k L TR, (e i e
v ’ -l'q - ‘1.1‘ sia b By il ) = | - |- Nt .l. F l"'lr..‘ . H'i"d’ - 'L: ] o ; ; :
; ) - L ety | | L < b . 4 - il r'] i N VT "‘I'_. B Y ey R R ’
- . S & Bh Y BT Y i 45 i e O Y 3 s el o e E‘ " A R il i l I e “’_. ‘ I A
’ o . SR f1 ; ;i = - 3 el ; " o Sl o T ¥ i wi 1 i o B
. E Lol i at . s :. r -‘d'.";!' "':-'.F'.'!ﬁt T}
| ! & 4 - - ¥ =
' -~ [ . y

| T Y g
| - b . S i

ave upnveathable and ean “be  2lf

“FHowwo - o _eontrol O

C”T Qnﬁ‘iﬂuﬂj e rnmmdm

Jump A FaFenmen (s

~ @ R
| o AR e J
vl tH F e s \
| »  jumps o conditionak jump \
Y ,L_.-' / | 5 ~
o [ y D¢ 0 Jrll;;f‘l_'} r
o | + (endiftonat j“” )
5 M PS 9 frcan '..
- R DA LIJL Laﬂﬂ[ '-:ESSCLK?’ J{’E P ,l
QPhe above Jumy

oy DE fﬂrgel \
D [,f.f’h:_'a

f N fﬁf{.}ﬁ!(d'r‘aﬁ cgd{,{i

be eliminalec!

= fﬁﬁt-x;!‘l |
L fodL O _fclt L Aei&&n& bl é)efm

| o if we have The jump Z

Scanned by TapScanner



& 0y

Ay on /tfm/) o L, and ,L

/)ﬂ(fo&c! 57 an untondetecninl oo

) -yofv Ay

":faﬁ'ﬁ L]chf

13‘

Scanned by TapScanner



=1 L] - i ]
| . :?.1 by ; '.1. i{. d ..1 ;‘-

B B

o

™ v :Il'
N e
Py Y = R

= ) d e 1

— Howerer , anﬁy Q :ﬂ'e-co

‘{ﬂqmnl‘fy M@t((?ﬁ 7770(} e ‘ eny

| . i
i
i
|

| :;E@a’ 0g- F
i A st Consicley  The staterment,

BB . s i

K G5 kLM

S — S

saioht r/oa”i.tﬂarcf and
£ A 57?7@2;1@ .a%%aﬁmmrf‘s Q3¢ /‘Shﬂltj |

can be. eltornafecl ffm“m,e?ﬁ /)@Q/‘Jhafﬂ cy)hmfzafl?n

e e

*&'\ S Rudeetion 0 S ne ffv T

B Dhis seplacss expeniive

'E‘ Fa e-hmf)rz ¥y O p ercLlrons

op ¢ 3*&#9 A fm y €q i velend- . 5;:

o THu fmff e Machene .

1.. o

o HM/WP [,rcFa Hoo O /}E *J?,Tt fos — ‘—JF #
Addifional cﬁm-mfor AR N

'
‘‘‘‘‘‘‘

-': .:..-I.{.j -rt‘i X |
- 'L'-..:_ o

b 13 .... "_' {
N = \ Rl o=

-.-. i |.’ ? I-_"
b BT

" g L ‘.E‘f

e i -

el i

L

- -"'n“

o - i -t
Y Ly |--fr L : : . -,. — TN

2 - ‘s i r i - B
g & \ g 1 . i K ! = s _'*A-._ o™
: 3 i . e ol ey E A ..”1 - _ll J.h ;1.- ‘,._ : -.- I'ﬂ-‘l‘.. ‘,‘_|' #
2 g SR e
. : . i "
i R " 'l. iy A 1 1 - - - s ‘. |I. i; g iy
w - - - ¥ F T -8 - I " ; L‘\
: o v b 4 ' " "
ip ¥ 1°p .-I 3 . I
Yy = . 8, i

E il - . iy 3 B o 3 iy - L Rt [ g = - A, . 3 .
: = e LIS i R N & = N = I e o " T Y e
= . - - L A e 3 o f £ ,.-. B 11 'I. ol -FI il ?-'- i r ) 2 i ‘.,u |1 P d k : o PJ‘_JI:S. JI 55 __l- . .
T.-fl'. - ?.t_—l.l-iﬁ_ . 'l‘ 4 . AU LA -':_.-.: 1 ,;'." J - L K -
! - Y " d ~ Sy = = > i " » 1 s

Scanned by TapScanner



o s :'=-,-_-' =%
ey, -“1;1 :
:-.';I.
’i‘i ...!ﬂ"h.., 1‘ ,r

. Sy 4s r‘. q‘l:&'& .y v 4 -... .-:. _-.I_:
' - |. _l. = o b =
oa B | 1 rq!"' % w d‘ $ o .-. - '---'- = = 3 !
1 » o y . LU _:_-.- o + - -y r ' i
i LY 1 $ #qgi .-x-*“--- et - e | s X
P A o T ” i
.J.' A - e o e i R e =Y 1 '.t -

ﬁcg f-= C+ 1

_This can be ﬁ'epz'aLch 5y cuLtéo

Fns fruefr1on fﬁ'f f‘E‘f__

s

ti

o

y n 4t i zafton3. %:

5 Thoe ant about Thu f‘:(}{/}hﬂf C/):‘rm:;za on —ﬁ:

IF
il . e

B Optimizabion_cf Bor(Te

. : : 'I N Gmed
e (7—7_}@ 0/1}1?.’1”;:{0[{{11 oy !y If.”‘-:' f?f??ﬂgfl‘.?fl') /)P’é

, e D) : v irfee .;' .f]fflf]!fffcéd u&fn d
uaing Lagic block? can be easily 1TV 7

atyelic _graph (DPG).
| R 3
U&I 'Thf _'jnﬂ(; 18 & rr(*’*‘:fﬂf l't‘(‘lj/ UZ ‘“ﬂ"ue f?

nodes ¢ m#
the thyee- addveys eode, ¢ ohere internal P

sernk #u. rqn‘ ..

th eompu,fah’rm & (t't{ nedi M/‘ﬂt

a‘ #;t gﬁucknt pluuvmj ffruruia
— cdu-x{wwwn acf,rmmab'w*

: -1:.‘. &

Scanned by TapScanner






Scanned by TapScanner



Q
-
C
©
O
N
o
©
—
>
O
ke,
Q
-
C
©
O
)




Scanned by TapScanner




Scanned by TapScanner




Scanned by TapScanner




Scanned by TapScanner




T —————

5.kl f ri?f‘f Q!"Cf [)GH”

i e —— e ———

0 the Hutane at cobrich 1he Maﬁe o |

-3 M /)m‘nf‘

va?"raf)[r A diérmof :'. i g '6 .
L9 o bavic bk a pomf L3 o[alﬁrrmc} oftue

fwe ad/aunf J’Fm’tmmtz and alfo %0‘-"9 rhe j’rﬂf
a{f?r
Sfatemeni aﬂd 7He .flmé_

*:____E____f_‘L Citﬂ.ffd’u The f@w?rtgm,

B e T e

d; E =T
f d(;) .‘J-‘: I
5 \[ N d, dsy A3 cls ds ---‘»({r[{ rolfion
5 RES. o) |
/ P(?;f y O Ty /ﬁz
/ ; \[ \—
/ —e__
" [ds:j:=J-" DR3
{ R IZ, €T
f’ [Aa\Y [ B
% 6O Gg' P flow graph

B S —

_ Heve the bleck B, centams ﬁu-}’/’ox)’)ﬁ o one éﬂzﬂcm any
| o M assigomunh (e Start of the assignnunt). and one afte,
. éaeh of thvee assigoprunti (. orv afbey ¢-m - and
ﬂf y : %07 (=M~ ann

|
am aﬁh,‘ j:;h, Md GQQW?’ ong aﬁt"" Q TQ; )

Scanned by TapScanner



4 il ¥

R ..:.-".'. B - - n— '
i LI R S 11_1:;' A i
#‘# T -_'JT' ]gﬁa&«"—k g P R
i B W o - . e " : - '.

_:_' '_a!-'ﬂ:_'l

o 11 .
N A

o

i
W ol

Y gt

-

wrallie

#
i
g
¥
..
i

Scanned by TapScanner



D
-
C
©
O
)
o
©
—
>
O
ke,
Q
-
C
©
O
)




WOt &l Thye

STLitftard  Jiew - control er BT YRS " X

§ ,Pf"V}“fff worth  +he _fﬂ'/ff"“'""'y_-f*Jf/mC?’)r’T

Fs

; | . R :_" y '{.. r
LRI 4 N SR (AP e fff £ +hen G else S'/("ft? ¢ ahile f

/

ey

E = (d£id ] cd

Pl . /1

.IF .
e il L
e —} o ol 4 "f};f] f.]if'ﬁ f:.f— ¢
1._--] " ; _ 3 ‘ ; ; A .

i a pertion g @ f (ocw grcl,bb Phetl

s N
0 gef of hectds &
o y all ofhes nodes 1 1N

fﬂﬁﬂu{ﬂﬂ,‘i Q headev , rohich Cfém}ﬂaﬁi

)‘)ogﬁpn re Callecl o 'Ji/tC’f‘)

NArcaret
it Ne Afafements Qee /
| ¥ Dy 5[56&5 (S

by epun ettt
ol i
“« The bfﬁmnmj peinfi ¢ the dummy blocks al

,qqfry ancl  oxtf of A Sﬁfﬁfﬂﬁnff nymn Cﬂ’e Favi

) ve [ HLE
5€3r'nm'n3 and end porr Cs ms/aec&r e ly 07'

- AfafemenD T P

Scanned by TapScanner -

in:



Scanned by TapScanner



v A

C

Scanned by TapScanner




- fhw fhe e ger i § and Y ‘9&}{"“5
Ki (led by THuc [m@/). Ih the case ry Ipﬂff{”hj’ C&”N
e ﬂaymm[hf ch _- ff-’ue dﬁjfr’ﬂiﬁor) rbfwﬁwﬁﬂn /‘zi?fnjer-'
thet M vole o o veriable b aba PRIt L fimicy
" o Adnw Amall number Jf/)f?ﬁf%f'/fﬂ'

Bib .5 - C@mfjufaffont GZ ) and _CJU} 4

————————

(@m/)&r f?‘l?j fhe

=3 .f%_r_vtmff’mu problemy  cap be Aolved /jﬁ’

synthesind atributes "gen” and Kill -
s There ave ofher Kinds of data- floco informatfor

wﬂw cwe Aeed o c@m}buféf

.\I-

AUth as Waff)fﬁ(? o&ﬂnfﬁm
INhertfed  abteshetes.

# fh[é‘j e in hertfecl m‘fﬂ‘%ctfé; and

.__.-*'"“\..____. o R S S—

¥ 0&{’[3] O a SLYnfthes r"ze(r’_ m’fn/ﬁ.a:f& @ﬁn(fr}y mhfrj

o 0]sT fe the Aot of  olefiorfion veaching fhe |
Ae;;mm*ng of S
— otk[s] ua fAE set of  cleftorfrons 74 ap n’ac}) Lo
enol cf & wr/h ?So/[mw‘r? e path oulside S.

v :—‘j{éﬁﬁ] A e Seb of definitions That reach ‘/Ai

:

S A
Lol ex S witho et ?’t*f(awr‘nj /‘)c}fh octsrdle J‘

- ﬁﬁf‘?! Gom/)uﬁn? ém'fa"] and FiIT[S ] Aoﬁr’m-tﬁ.o }for'
all the Atatermends 8 J; s mﬁ.y Cormnple o, ang out’

B - .
[ TR J

Scanned by TapScanner



Scanned by TapScanner




Scanned by TapScanner



T ——— “ - 2. For the instruction S

. ”/[. Cl r(‘ - L . T | | : | :
f ;

> The diffisenee A-B o sebr & and B can b

rmp lementea by ‘lmﬂht"" the eomplevunt of g & fhen

R 3 ' ' F B s IFriet’
Mrﬂﬁr ft‘yrm( ancl "' te f(m/qf___i{} A A 2‘8}'{ £ tIerd

/’VQ?’GﬁOﬂ 3 ;‘:: |
(

L B8 {Jeq. J)n?ﬁr‘nfff‘on chartrs --

—w

. . _ : Y iaE Yy
5 Pt b aony fo sfore T veaching  olefroimon

re §itic e y ’" Y .
formalioo ou " Ure. clefinifict QORI " oy Lict - C10Y

— — —— ==

- pohith ave Aists foe eoth b, op @

| - LLAL
| oﬁhfr‘nf‘ﬁom thot Suaeh that

verfablc,

\ AR R _ 5 7 A8 i o ot
ol gl 5 8 block B P |
¥ LE O L A€ c?‘ vart

—on Tha Cld-che

wifhin 10

.___}c[hm UL abﬂ(f The &),(Uﬁa,{ @afaff@w Cr.ff‘(t('r;j‘;'ff

g : (ode D vow}_wj "/—\mmbormﬁom
% ¥ ok ke A A AL

N %E (o de imﬁmvin? fmmbamaﬁam "T'Eﬁy on

g —

S S [ “rﬁf"‘?. jgéqﬂaﬁbn. Jor ifﬂ/)’o"v!-’ff?c? The tode, we

- &

t

consiolta ftue framzsﬂmah'm.

Ul . Funedion pnserrfhj H&-ﬁszﬁ‘éi‘}na&*:n
. Ct'c*/) 6pﬁ}mzaﬁan_ /

Scanned by TapScan-ne'r



% W i-1- Y - . r 3 I i
© COAC sequences generated tor the indexed assignment HALCTTICRES

tjandalilzo=bh

{ ode Geenerated ( ost
| MOV b{R,), R . 2
' MOV b. a(R) \

Generating Code for Pointer Assignments

|

ble sl | ad f -1 assignments
The table shows the code sequences generated for the pomnter assig

a:=%pand *p:=a

dat N ] L T - ..t
Statements Cos
L M S e f e
3 = ‘p
R SRR B 5
"B =8 Z
Generating Code for C onditional Htatements
SIRIEIIEI-I_[ Code
i i 3 if condition code |
| £33 2 /* jumpto Z 1

1s negative */

- —

x:=y +Z
ifx <0 gotoz

THE DAG REPRESENTATION FOR BASIC BLOCKS

d

f

'« A DAG for a basic block is a directed acyclic graph with the followingﬁlébels on nodes:
* 1 Leaves are labeled by umique identifiers, either vanable names or constants.
2 Interior nodes are labeled by an operator symbol. - e
| 3. Nodes are also optionally given a sequence of identifiers for labels to store the
i . computed values.
; | e DAGs are useful data structures for implementing transformations on basic blocks.

e It gives a picture of how the value computed by a statement is used 1n subsequent
statements.

e It provides a good way of determining common sub - expressions.

L -
R n

T Lo

Scanned by TapScanner



input: A basic block

Output: A DAG for the basic block containing the following information:
tifier. For interior nodes, an

1. A label for each node. For leaves, the label is an iden

operator symbol. 4 S
2 For each node a list of sttached identifiers to hold the computed va

“Case liii)x: =y
Method:
-Step 1: If y is undefined then create nodely). : |

If 7 is undefined, create node(z) for case(i).

Step 2: For the casefi), create a node(OP) whose left child is node(y) and right child is

node(z). { Checking for common sub expression). Let n be this node.

i
For case(ii), determine whether there 1s node(OP) with one child node(y). If not create such |
a node.

For case(iii), node n will be node(y].

Step 3: Delete x from the list of identifiers for node(x). Append x to the list of attached

identifiers for the node n found in step 2 and set node(x) to n.

Example: Consider the block of three- address statements:

= 4% i

t;:= 3“3]

= 4%

t. = blty]

ts = %

i ;= prod+ts ’
prod := t :
;= +1 .

Ry

. 10. if <=20 goto (1) ‘

& L] ™ -

L]

e a0 B o

L e

.

Scanned by TapScanner



Scanned by TapScanner



®

(e)

prod0

Statement (9)

Statement (6), attach

t5 identifier prod for
Statement (/)

Scanned by TapScanner




tatement (8),.ans
identifier 1 for

otatement (9)

Fmal DAG

t/ 1 20

Application of DAGs: : By

| We can automatically detect common sub expressions.
2. We can determine which identifiers have their values used in the block.

3. We can determine which stawments compute values that could be used outside the block.

-

Scanned by TapScanner



5 pEFICIENT DATA FLOW ALGORITHMS
Dal[:i—ﬂﬂu-' E'iniil}“ﬁ“ﬂ 5[’){_‘@{1 can be inc |

I Depth-First Ordening in iterative Ajee

) ~ture ;
L. Struulurvhaﬂed Data-Flow Analvsis

nithims

generalize the syntax-directed approach. |

Depth-First Ordering in ite;‘mive Algorithms

e Reaching definitions. Available expressions, or live variables, any ¢
node will be propagated to that node along an acychc path

e lterauive algonthms can be used to track their acychc nature.

e ~ If a definition d is in in[B] then there is some acychc pat
such that d is in the in's and out's all along that path.

e ~1f an expression x+y 1S not available at the entrance 10 hlock B. then
path that demonstrates that fact; either the path 1s from
statement that kills or generates x+y, oOr the path 1s from a block that
path there 15 no subsequent generation of x+y.

« For live variables. if x is live on exit from block B. then there 15
use of x, along with there are no definitions of x.

« If a use of x 1s reached from the end of b

that cycle to find a shorter path along which the use of x is sull reach

Procedure
| First visit the root node of the tree. Eg. (1)
> 1f no root node present, then visit
3 Alter reaching depth visit the MISSE

-

reased by the followme two algorithms

h from the block containing

The first 1s an : Tt ¥ A
3 dpph"'?“'o" of *pth-first ordenng to reduce the number Of Passes that th

- ’ g . U 2 .
pterative algorithm takes, and the second uses intervals or the Tjand T» transformations

()

vent of sigmificance at d

do B

there 1s some acychc

lock B along a path with a cycle.
ed from B.

the first nght hand side node. Eg. (1)
d node by visiing thewr parent node

| 7 i
(7) / 2 X

Figure 5.18: Depth first traversal for the given tree.
The order of visiung the edges 1n the above tree is:,

the nitial node and includes no
kills x+v and along the

an acychc path from Btoa

we can ehimimnate

153343 627385102829383736343534333 13231
' IS AR

P mmdgﬂthutiscnefusimei&mSmb,wcconsuemiL
OB After visiting node 10, back tract to 8 10 visit 9.
R -mm‘ﬂ&omﬂﬁﬂ”wiﬂmch[nl}lmd&uﬂ] will

e T e e e L e
o e e
e

]

4
”. §

i

| A 1"-'-I.i- ¢ N '-jj':': d
: :;‘:I?!p X

; o e &
= Lr‘-_'__:"f.:
b g
-' oy al
] b "'
h o |y

g 1-'1:{5-::_2:‘?!: : '.

ot B ¥
C) SRS
‘:w;_ r

L "

Lo L.
-l;_.*.: ; :

Scanned by TpScanner




Structure-based Data-Flow Analysis
aodes no more tunes than the mtervy

We can implement data flow algonthms that visil | i data-flow algorithms Fol
depth of the flow graph) The ideas exposed here apply 10 Syntax directed da alg
all sorts of structured control statements.

This algorithm focus on multiple exists in the blocks. Vo g

: . '. 1- L 4 - 1oy . i

o Gen g pindicates the defimtion that was generated m the region R of th; bti*;lt ; ;:

: ' | » basic block

e Kill g g indicates the defiminon that was killed 1n the region R of the basic b | I; 1
* - e The transfer functuion Trans g g (S) of definition set S 1s set of dL.]lIlllH!li% [0 1€ ern
' of block B by traveling along paths wholly within R.

The definitions reaching the end of block B fall into two classes. i s
1. Those that are generated within R and propagate to the end of B independent ol . .
t also are not killed along some path from

2. Those that are not generated in R, but tha o k.
the header of R to the end of B, and therefore are in ‘I'rans g, g (S) 1f and only 11 they

are in S.

Thus, we may write trans in the form:
Trans R.B (S) = GEI.’I R.B U (S — Kill R,B)

Case 1: |
If the transformation does not alter any definition I the basic block B, then the transfer

function of region R, is same as the transfer function of Block B.
Gen BB — Gen|[B] )
kill g 5 = Kill[B]

Case 2:
The region R 1s formed when R, consumes R,. There are no edges from R; to Ry.

Header of R 1s the header of R,. The R; does not affect the transfer function of R,

Gen g g = Gen gy, B

kill R,B — kill R1, B forall B in R{.

Figure 5.19; Region building by T>

For B in R, a defimuon can reach the end of B if any of the following conditions hold:
* 1. The definition is generated within R,. :
~° 2. The defimuion is generated within R, reaches the end of some predecelsor of the header
of Ry, and 15 not Killed going from the header of R, 10 B.
.4 The defipinop 15 in the set S available at the header of Ry, not killed gomg 10 sowe
» « predecessor of the header of Ry, and not killed going from the header of Ry 10 B.
Scanned by TapScanner




	UNIT-III SYNTAX DIRECTED TRANSLATION
	SYNTAX DIRECTED TRANSLATION
	Syntax Directed Definitions
	Syntax Directed Definitions: An Example
	S-ATTRIBUTED DEFINITIONS
	L-attributed definition
	Restrictions for translation schemes:
	SYMBOL TABLES
	 Symbol Table Interface
	RUNTIME ENVIRONMENT
	STORAGE ORGANIZATION
	STATIC ALLOCATION
	 Stack-dynamic allocation
	 Address generation in stack allocation
	HEAP ALLOCATION
	PARAMETERS PASSING
	Call-by-Value
	Call-by-Reference
	Copy-Restore
	Call-by-Name


